Gamunu-4b-Instruct-Alpha
සිංහල instruct LLM — Experimental Release
Gamunu-4b-Instruct-Alpha is the first experimental checkpoint of the Gamunu Project, a Sinhala-centric bilingual Large Language Model. Built through continued pre-training on Sinhala-rich academic and domain-specific data, it's fine-tuned for instruction following, reasoning, and culturally grounded interactions.
⚠️ Alpha Notice
This is an experimental research model.
It demonstrates strong Sinhala fluency, reasoning, and broad NLP coverage — but is single-turn only and not yet RLHF-aligned for multi-turn dialogue.
Use for research, benchmarking, and controlled deployments — not production.
🧪 Live Demo
Now you can try Gamunu-4b-Instruct-Alpha instantly on Hugging Face Spaces for free 👇
🔗 Gamunu ZeroGPU Demo
⚡ Capabilities
🔤 Language & Reasoning
- Fluent, idiomatic Sinhala generation
- Robust Sinhala ↔ English bilingual understanding
- Solid mathematical reasoning (percentages, word problems, arithmetic)
- Logical, step-by-step reasoning in QA tasks
- Structured, concise, and context-aware responses
🎭 Roleplay & Instruction
- Accurate adherence to single-turn instructions
- Expert persona simulation (teacher, scientist, analyst, advisor)
- Balanced, formal, and culturally aware tone
🧩 Supported NLP Tasks
- Text generation & completion
- Summarization (educational / contextual)
- Translation (Sinhala ↔ English)
- Paraphrasing and rewriting
- Question answering (factoid + reasoning)
- Instruction-based classification
- Role-specific expert responses
🚫 Limitations
- No conversational memory
- Occasional factual drift
- No RLHF or safety tuning yet
- Reasoning quality may degrade with ambiguous prompts
🎯 Intended Use
Best for
- Research & evaluation of Sinhala LLMs
- Educational assistants and analytical Q&A
- Cultural, marketing, and academic content generation
- Benchmarking instruction following in low-resource languages
Not for
- Medical, legal, or financial decision-making
- Production systems requiring factual reliability
- Processing sensitive or personal data
🧩 Training Details
Phase 1 – Continued Pre-training (CPT)
Focused on enhancing Sinhala linguistic coverage and contextual understanding for semantic depth.
Phase 2 – Supervised Fine-tuning (SFT)
Fine-tuned on a custom Sinhala instruction dataset emphasizing reasoning, roleplay, and assistant-style behavior.
| Setting |
Value |
| Framework |
Unsloth + Transformers |
| Optimizer |
AdamW + cosine scheduler |
| Hardware |
NVIDIA H100 (80 GB) |
| Epochs |
5 |
| LoRA Rank / α / Dropout |
128 / 128 / 0.05 |
📋 Model Summary
| Property |
Description |
| Stage |
Alpha (Experimental) |
| Pipeline |
CPT → Custom SFT (LoRA) |
| Base Model |
Google Gemma 3 4B |
| Languages |
Sinhala (primary), English (secondary) |
| Dialogue Type |
Single-turn instruction |
| Context Length |
2048 tokens |
🧩 Base Model License
This model was fine-tuned from Google Gemma 3 4B, distributed under the
Gemma Terms of Use.
All rights to Gemma 3 4B remain with Google LLC.
The Gamunu-Instruct-4B-Alpha weights, datasets, and training code are released by
Manthila Mallawa (The Gamunu Project) under the Apache 2.0 License.
Use of the base model remains subject to Google's policies.
💬 Example Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_name = "manthilaffs/Gamunu-4B-Instruct-Alpha"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
device_map="auto"
)
sinhala_prompt = """පහත දැක්වෙන්නේ යම් කාර්යයක් පිළිබඳ විස්තර කරන උපදෙසක් සහ එයට අදාළ තොරතුරු ඇතුළත් ආදානයකි. ඉල්ලූ කාර්යය නිවැරදිව සම්පූර්ණ කළ හැකි ප්රතිචාරයක් සපයන්න.
### උපදෙස:
ඔබ ගැමුණු (Gamunu) නම් AI සහායකයායි.
ඔබේ කාර්යය වන්නේ පරිශීලකයන්ගේ උපදෙස් නිවැරදිව පිලිපැදීම හා අසා ඇති ප්රශ්නවලට නිවැරදිව පිළිතුරු සපයමින් ඔවුන්ට සහය වීමයි.
### ආදානය:
{}
### ප්රතිචාරය:
{}"""
user_query = "හෙලෝ ගැමුණු! මම සමන්, ඔයාට කොහොමද?"
prompt = sinhala_prompt.format(user_query, "")
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.inference_mode():
outputs = model.generate(**inputs, max_new_tokens=250)
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
if "### ප්රතිචාරය:" in text:
text = text.split("### ප්රතිචාරය:")[-1].strip()
print(text)
🧾 How to Cite
If you use Gamunu-Instruct-4B-Alpha in your work, please cite as follows:
APA
Mallawa, M. (2025). Gamunu-Instruct-4B-Alpha: A Sinhala-centric bilingual instruction-tuned language model. The Gamunu Project. Retrieved from https://huggingface.co/manthilaffs/Gamunu-Instruct-4B-Alpha
BibTeX
@misc{mallawa_gamunu_instruct_4b_alpha_2025,
author = {Mallawa, Manthila},
title = {Gamunu-Instruct-4B-Alpha: A Sinhala-centric bilingual instruction-tuned language model},
year = {2025},
publisher = {The Gamunu Project},
howpublished = {\url{https://huggingface.co/manthilaffs/Gamunu-Instruct-4B-Alpha}}
}