manmah's picture
Add new SentenceTransformer model
1917064 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:156
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
  - source_sentence: >-
      What challenge related to prompt injection has seen little progress since
      September 2022?
    sentences:
      - >-
        Except... you can run generated code to see if it’s correct. And with
        patterns like ChatGPT Code Interpreter the LLM can execute the code
        itself, process the error message, then rewrite it and keep trying until
        it works!

        So hallucination is a much lesser problem for code generation than for
        anything else. If only we had the equivalent of Code Interpreter for
        fact-checking natural language!

        How should we feel about this as software engineers?

        On the one hand, this feels like a threat: who needs a programmer if
        ChatGPT can write code for you?
      - >-
        Prompt injection is a natural consequence of this gulibility. I’ve seen
        precious little progress on tackling that problem in 2024, and we’ve
        been talking about it since September 2022.

        I’m beginning to see the most popular idea of “agents” as dependent on
        AGI itself. A model that’s robust against gulliblity is a very tall
        order indeed.

        Evals really matter

        Anthropic’s Amanda Askell (responsible for much of the work behind
        Claude’s Character):
      - >-
        Industry’s Tardy Response to the AI Prompt Injection Vulnerability on
        RedMonk Conversations



        Posted 31st December 2023 at 11:59 pm · Follow me on Mastodon, Bluesky,
        Twitter or subscribe to my newsletter



        More recent articles


        Qwen 3 offers a case study in how to effectively release a model - 29th
        April 2025

        Watching o3 guess a photo's location is surreal, dystopian and wildly
        entertaining - 26th April 2025

        Exploring Promptfoo via Dave Guarino's SNAP evals - 24th April 2025


         


        This is Stuff we figured out about AI in 2023 by Simon Willison, posted
        on 31st December 2023.


        Part of series LLMs annual review


        Stuff we figured out about AI in 2023 - Dec. 31, 2023, 11:59 p.m. 

        Things we learned about LLMs in 2024 - Dec. 31, 2024, 6:07 p.m.
  - source_sentence: Which company released the QwQ model under an Apache 20 license?
    sentences:
      - >-
        I also gave a bunch of talks and podcast appearances. I’ve started
        habitually turning my talks into annotated presentations—here are my
        best from 2023:


        Prompt injection explained, with video, slides, and a transcript

        Catching up on the weird world of LLMs

        Making Large Language Models work for you

        Open questions for AI engineering

        Embeddings: What they are and why they matter

        Financial sustainability for open source projects at GitHub Universe


        And in podcasts:



        What AI can do for you on the Theory of Change


        Working in public on Path to Citus Con


        LLMs break the internet on the Changelog


        Talking Large Language Models on Rooftop Ruby


        Thoughts on the OpenAI board situation on Newsroom Robots
      - >-
        OpenAI are not the only game in town here. Google released their first
        entrant in the category, gemini-2.0-flash-thinking-exp, on December
        19th.

        Alibaba’s Qwen team released their QwQ model on November 28th—under an
        Apache 2.0 license, and that one I could run on my own machine. They
        followed that up with a vision reasoning model called QvQ on December
        24th, which I also ran locally.

        DeepSeek made their DeepSeek-R1-Lite-Preview model available to try out
        through their chat interface on November 20th.

        To understand more about inference scaling I recommend Is AI progress
        slowing down? by Arvind Narayanan and Sayash Kapoor.
      - >-
        “Agents” still haven’t really happened yet

        I find the term “agents” extremely frustrating. It lacks a single, clear
        and widely understood meaning... but the people who use the term never
        seem to acknowledge that.

        If you tell me that you are building “agents”, you’ve conveyed almost no
        information to me at all. Without reading your mind I have no way of
        telling which of the dozens of possible definitions you are talking
        about.
  - source_sentence: >-
      How has Apple’s MLX library impacted the performance of running machine
      learning models on Apple Silicon?
    sentences:
      - >-
        These abilities are just a few weeks old at this point, and I don’t
        think their impact has been fully felt yet. If you haven’t tried them
        out yet you really should.

        Both Gemini and OpenAI offer API access to these features as well.
        OpenAI started with a WebSocket API that was quite challenging to use,
        but in December they announced a new WebRTC API which is much easier to
        get started with. Building a web app that a user can talk to via voice
        is easy now!

        Prompt driven app generation is a commodity already

        This was possible with GPT-4 in 2023, but the value it provides became
        evident in 2024.
      - >-
        On paper, a 64GB Mac should be a great machine for running models due to
        the way the CPU and GPU can share the same memory. In practice, many
        models are released as model weights and libraries that reward NVIDIA’s
        CUDA over other platforms.

        The llama.cpp ecosystem helped a lot here, but the real breakthrough has
        been Apple’s MLX library, “an array framework for Apple Silicon”. It’s
        fantastic.

        Apple’s mlx-lm Python library supports running a wide range of
        MLX-compatible models on my Mac, with excellent performance.
        mlx-community on Hugging Face offers more than 1,000 models that have
        been converted to the necessary format.
      - >-
        On the one hand, we keep on finding new things that LLMs can do that we
        didn’t expect—and that the people who trained the models didn’t expect
        either. That’s usually really fun!

        But on the other hand, the things you sometimes have to do to get the
        models to behave are often incredibly dumb.

        Does ChatGPT get lazy in December, because its hidden system prompt
        includes the current date and its training data shows that people
        provide less useful answers coming up to the holidays?

        The honest answer is “maybe”! No-one is entirely sure, but if you give
        it a different date its answers may skew slightly longer.
  - source_sentence: >-
      What are some ways to run local, private large language models (LLMs)
      mentioned in the context?
    sentences:
      - >-
        We don’t yet know how to build GPT-4

        Frustratingly, despite the enormous leaps ahead we’ve had this year, we
        are yet to see an alternative model that’s better than GPT-4.

        OpenAI released GPT-4 in March, though it later turned out we had a
        sneak peak of it in February when Microsoft used it as part of the new
        Bing.

        This may well change in the next few weeks: Google’s Gemini Ultra has
        big claims, but isn’t yet available for us to try out.

        The team behind Mistral are working to beat GPT-4 as well, and their
        track record is already extremely strong considering their first public
        model only came out in September, and they’ve released two significant
        improvements since then.
      - >-
        I’m still trying to figure out the best patterns for doing this for my
        own work. Everyone knows that evals are important, but there remains a
        lack of great guidance for how to best implement them—I’m tracking this
        under my evals tag. My SVG pelican riding a bicycle benchmark is a pale
        imitation of what a real eval suite should look like.

        Apple Intelligence is bad, Apple’s MLX library is excellent

        As a Mac user I’ve been feeling a lot better about my choice of platform
        this year.

        Last year it felt like my lack of a Linux/Windows  machine with an
        NVIDIA GPU was a huge disadvantage in terms of trying out new models.
      - >-
        I run a bunch of them on my laptop. I run Mistral 7B (a surprisingly
        great model) on my iPhone. You can install several different apps to get
        your own, local, completely private LLM. My own LLM project provides a
        CLI tool for running an array of different models via plugins.

        You can even run them entirely in your browser using WebAssembly and the
        latest Chrome!

        Hobbyists can build their own fine-tuned models

        I said earlier that building an LLM was still out of reach of hobbyists.
        That may be true for training from scratch, but fine-tuning one of those
        models is another matter entirely.
  - source_sentence: >-
      What is the most important factor in determining the quality of a trained
      model according to the context?
    sentences:
      - >-
        Intuitively, one would expect that systems this powerful would take
        millions of lines of complex code. Instead, it turns out a few hundred
        lines of Python is genuinely enough to train a basic version!

        What matters most is the training  data. You need a lot of data to make
        these things work, and the quantity and quality of the training data
        appears to be the most important factor in how good the resulting model
        is.

        If you can gather the right data, and afford to pay for the GPUs to
        train it, you can build an LLM.
      - >-
        Now add a walrus: Prompt engineering in DALL-E 3

        32.8k

        41.2k



        Web LLM runs the vicuna-7b Large Language Model entirely in your
        browser, and it’s very impressive

        32.5k

        38.2k



        ChatGPT can’t access the internet, even though it really looks like it
        can

        30.5k

        34.2k



        Stanford Alpaca, and the acceleration of on-device large language model
        development

        29.7k

        35.7k



        Run Llama 2 on your own Mac using LLM and Homebrew

        27.9k

        33.6k



        Midjourney 5.1

        26.7k

        33.4k



        Think of language models like ChatGPT as a “calculator for words”

        25k

        31.8k



        Multi-modal prompt injection image attacks against GPT-4V

        23.7k

        27.4k
      - >-
        I think people who complain that LLM improvement has slowed are often
        missing the enormous advances in these multi-modal models. Being able to
        run prompts against images (and audio and video) is a fascinating new
        way to apply these models.

        Voice and live camera mode are science fiction come to life

        The audio and live video modes that have started to emerge deserve a
        special mention.

        The ability to talk to ChatGPT first arrived in September 2023, but it
        was mostly an illusion: OpenAI used their excellent Whisper
        speech-to-text model and a new text-to-speech model (creatively named
        tts-1) to enable conversations with the ChatGPT mobile apps, but the
        actual model just saw text.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy@1
            value: 0.9166666666666666
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 1
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 1
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.9166666666666666
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.20000000000000004
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.10000000000000002
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.9166666666666666
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 1
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 1
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9692441461309548
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9583333333333334
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9583333333333334
            name: Cosine Map@100

SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-l
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("manmah/legal-ft-717cb2ad-5d19-4d52-ad34-5656c2895fa9")
# Run inference
sentences = [
    'What is the most important factor in determining the quality of a trained model according to the context?',
    'Intuitively, one would expect that systems this powerful would take millions of lines of complex code. Instead, it turns out a few hundred lines of Python is genuinely enough to train a basic version!\nWhat matters most is the training  data. You need a lot of data to make these things work, and the quantity and quality of the training data appears to be the most important factor in how good the resulting model is.\nIf you can gather the right data, and afford to pay for the GPUs to train it, you can build an LLM.',
    'I think people who complain that LLM improvement has slowed are often missing the enormous advances in these multi-modal models. Being able to run prompts against images (and audio and video) is a fascinating new way to apply these models.\nVoice and live camera mode are science fiction come to life\nThe audio and live video modes that have started to emerge deserve a special mention.\nThe ability to talk to ChatGPT first arrived in September 2023, but it was mostly an illusion: OpenAI used their excellent Whisper speech-to-text model and a new text-to-speech model (creatively named tts-1) to enable conversations with the ChatGPT mobile apps, but the actual model just saw text.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.9167
cosine_accuracy@3 1.0
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.9167
cosine_precision@3 0.3333
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.9167
cosine_recall@3 1.0
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.9692
cosine_mrr@10 0.9583
cosine_map@100 0.9583

Training Details

Training Dataset

Unnamed Dataset

  • Size: 156 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 156 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 12 tokens
    • mean: 20.92 tokens
    • max: 35 tokens
    • min: 43 tokens
    • mean: 135.28 tokens
    • max: 214 tokens
  • Samples:
    sentence_0 sentence_1
    What are the two main categories of AI agents described in the context? The two main categories I see are people who think AI agents are obviously things that go and act on your behalf—the travel agent model—and people who think in terms of LLMs that have been given access to tools which they can run in a loop as part of solving a problem. The term “autonomy” is often thrown into the mix too, again without including a clear definition.
    (I also collected 211 definitions on Twitter a few months ago—here they are in Datasette Lite—and had gemini-exp-1206 attempt to summarize them.)
    Whatever the term may mean, agents still have that feeling of perpetually “coming soon”.
    How is the term "autonomy" treated in discussions about AI agents according to the context? The two main categories I see are people who think AI agents are obviously things that go and act on your behalf—the travel agent model—and people who think in terms of LLMs that have been given access to tools which they can run in a loop as part of solving a problem. The term “autonomy” is often thrown into the mix too, again without including a clear definition.
    (I also collected 211 definitions on Twitter a few months ago—here they are in Datasette Lite—and had gemini-exp-1206 attempt to summarize them.)
    Whatever the term may mean, agents still have that feeling of perpetually “coming soon”.
    What colors and patterns are described on the two butterflies positioned in the feeder? Against this photo of butterflies at the California Academy of Sciences:


    A shallow dish, likely a hummingbird or butterfly feeder, is red. Pieces of orange slices of fruit are visible inside the dish.
    Two butterflies are positioned in the feeder, one is a dark brown/black butterfly with white/cream-colored markings. The other is a large, brown butterfly with patterns of lighter brown, beige, and black markings, including prominent eye spots. The larger brown butterfly appears to be feeding on the fruit.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 10
  • per_device_eval_batch_size: 10
  • num_train_epochs: 10
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 10
  • per_device_eval_batch_size: 10
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step cosine_ndcg@10
1.0 16 0.9554
2.0 32 0.9484
3.0 48 0.9692
3.125 50 0.9692
4.0 64 0.9692
5.0 80 0.9692
6.0 96 0.9692
6.25 100 0.9692
7.0 112 0.9692
8.0 128 0.9692
9.0 144 0.9692
9.375 150 0.9692
10.0 160 0.9692

Framework Versions

  • Python: 3.13.2
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.7.0
  • Accelerate: 1.6.0
  • Datasets: 3.5.1
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}