whisper-medium-medical-refined-v1
This model is a fine-tuned version of luiz-milare/whisper-medium-medical-v4 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2670
- Wer: 20.5464
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.109 | 0.4980 | 141 | 0.2438 | 19.8619 |
| 0.1185 | 0.9960 | 282 | 0.2499 | 20.6108 |
| 0.1186 | 1.4909 | 423 | 0.2533 | 21.2426 |
| 0.0984 | 1.9890 | 564 | 0.2529 | 21.1315 |
| 0.0734 | 2.4839 | 705 | 0.2710 | 20.5991 |
| 0.077 | 2.9819 | 846 | 0.2670 | 20.5464 |
Framework versions
- Transformers 4.52.0
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- 2
Model tree for luiz-milare/whisper-medium-medical-refined-v1
Base model
openai/whisper-medium
Finetuned
luiz-milare/whisper-medium-medical-v4