File size: 14,606 Bytes
2580e8d e9a15c5 2580e8d e9a15c5 2580e8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:45
- loss:DenoisingAutoEncoderLoss
base_model: nlpaueb/legal-bert-base-uncased
widget:
- source_sentence: The not apply to the prove to part of public at time it without
violation any non-disclosure in; or already Receiving before disclosure Party
evidenced its written records revealed Receiving by a third without non-disclosure
favour of the Party received the Party
sentences:
- The receiving party will segregate Confidential Information from the confidential
materials of third parties to prevent commingling.
- 'NON-DISCLOSURE AGREEMENT (NDA)
1.'
- 'The non-disclosure undertaking under this Agreement shall not apply to information
which the Receiving Party can prove to
have been part of public knowledge at the time the Receiving Party received it
or became public knowledge thereafter without violation of any non-disclosure
undertaking in favour of the Disclosing Party; or
have been already known to the Receiving Party before disclosure by the Disclosing
Party as evidenced by its written records or has been revealed to the Receiving
Party by a third party without violation of a non-disclosure undertaking in favour
of [Name disclosing party]; or
have been developed by the Receiving Party independently of the information received
by the Disclosing Party.'
- source_sentence: Disclosing receives Confidential Information Receiving for,,, 6,,
Party
sentences:
- 'THE PARTIES AGREE AS FOLLOWS:
The non-disclosure undertaking of the Receiving Party covers all information provided
by the Disclosing Party, or any third party on behalf of the Disclosing Party,
to the Receiving Party (the Confidential Information), whether transferred on
paper, verbally, electronically, or by any other means or on any other media.'
- In case the Disclosing Party receives any Confidential Information from the Receiving
Party for the purposes described in Section 2, the sections 3, 4, 5, 6, 7, 8 and
9 shall apply also to the Disclosing Party.
- The term “person” as used in this Agreement shall be interpreted to include, without
limitation, any other corporation, company, group, partnership or individual.
- source_sentence: return to disclosing party all forms such Information in control,
including to drawings, documents, models or any material copies thereof, delete
would be any but hardware
sentences:
- '
PREAMBLE
The Disclosing Party will disclose to the Receiving Party certain information
which is non-public at the time of disclosure and considered confidential by the
Disclosing Party.'
- Upon request, the receiving party will return or deliver to the disclosing party
all tangible forms of such Confidential Information in its possession or control,
including but not limited to drawings, specifications, documents, records, devices,
models or any other material and copies or reproductions thereof, respectively
delete Confidential Information that would be contained on any intangible format
such as but not exclusively hardware.
- 'Governing Law and Jurisdiction
This Agreement is governed by and shall be construed in accordance with the laws
of Switzerland.'
- source_sentence: “ Receiving the below “ Receiving
sentences:
- The “Receiving Party” is specified by the information below (see “Receiving Party”).
- The Parties submit to the exclusive jurisdiction of Zug.
- The courts at the domicile of [Name of disclosing party] shall have exclusive
jurisdiction.
- source_sentence: that term Agreement it the solely the purposes Section 2 Confidential
Information at its costs will appropriate confidentiality
sentences:
- The “Disclosing Party” in this Agreement refers to [Name Disclosing Party].
- The Parties hereto undertake to replace such invalid or ineffective provision
by an effective/valid provision.
- The Receiving Party hereby agrees that for the term of this Agreement it shall
use the Confidential Information solely for the purposes described in Section
2 and shall keep the Confidential Information strictly confidential, at all times
and at its own costs and will take appropriate steps to protect the confidentiality
thereof.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on nlpaueb/legal-bert-base-uncased
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) <!-- at revision 15b570cbf88259610b082a167dacc190124f60f6 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("lucagafner/NDA_finetuned_V1")
# Run inference
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 45 training samples
* Columns: <code>damaged_sentence</code> and <code>original_sentence</code>
* Approximate statistics based on the first 45 samples:
| | damaged_sentence | original_sentence |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 18.18 tokens</li><li>max: 81 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 41.53 tokens</li><li>max: 183 tokens</li></ul> |
|
* Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.3333 | 1 | 3.3557 |
| 0.6667 | 2 | 4.3068 |
| 1.0 | 3 | 3.916 |
| 1.3333 | 4 | 3.1851 |
| 1.6667 | 5 | 3.2759 |
| 2.0 | 6 | 3.1665 |
| 2.3333 | 7 | 3.1407 |
| 2.6667 | 8 | 2.6952 |
| 3.0 | 9 | 2.4053 |
| 3.3333 | 10 | 2.5579 |
| 3.6667 | 11 | 2.0525 |
| 4.0 | 12 | 2.2234 |
| 4.3333 | 13 | 1.8476 |
| 4.6667 | 14 | 2.0873 |
| 5.0 | 15 | 1.8472 |
### Framework Versions
- Python: 3.12.9
- Sentence Transformers: 4.0.1
- Transformers: 4.50.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### DenoisingAutoEncoderLoss
```bibtex
@inproceedings{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
pages = "671--688",
url = "https://arxiv.org/abs/2104.06979",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |