lucagafner commited on
Commit
e9a15c5
·
verified ·
1 Parent(s): 2580e8d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -11
README.md CHANGED
@@ -138,11 +138,7 @@ from sentence_transformers import SentenceTransformer
138
  # Download from the 🤗 Hub
139
  model = SentenceTransformer("lucagafner/NDA_finetuned_V1")
140
  # Run inference
141
- sentences = [
142
- 'that term Agreement it the solely the purposes Section 2 Confidential Information at its costs will appropriate confidentiality',
143
- 'The Receiving Party hereby agrees that for the term of this Agreement it shall use the Confidential Information solely for the purposes described in Section 2 and shall keep the Confidential Information strictly confidential, at all times and at its own costs and will take appropriate steps to protect the confidentiality thereof.',
144
- 'The “Disclosing Party” in this Agreement refers to [Name Disclosing Party].',
145
- ]
146
  embeddings = model.encode(sentences)
147
  print(embeddings.shape)
148
  # [3, 768]
@@ -202,12 +198,7 @@ You can finetune this model on your own dataset.
202
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
203
  | type | string | string |
204
  | details | <ul><li>min: 3 tokens</li><li>mean: 18.18 tokens</li><li>max: 81 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 41.53 tokens</li><li>max: 183 tokens</li></ul> |
205
- * Samples:
206
- | damaged_sentence | original_sentence |
207
- |:----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
208
- | <code>PREAMBLE The will disclose to Party is the of disclosure Party</code> | <code><br>PREAMBLE<br>The Disclosing Party will disclose to the Receiving Party certain information which is non-public at the time of disclosure and considered confidential by the Disclosing Party.</code> |
209
- | <code>PARTIES AS: The undertaking of by Party, party to Receiving Party the Information, transferred on electronically or media.</code> | <code>THE PARTIES AGREE AS FOLLOWS:<br><br>The non-disclosure undertaking of the Receiving Party covers all information provided by the Disclosing Party, or any third party on behalf of the Disclosing Party, to the Receiving Party (the Confidential Information), whether transferred on paper, verbally, electronically, or by any other means or on any other media.</code> |
210
- | <code>transmitted for performing its activities view of) project</code> | <code>The Confidential Information is transmitted to the Receiving Party for performing its activities in view of the ((insert)) project.</code> |
211
  * Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
212
 
213
  ### Training Hyperparameters
 
138
  # Download from the 🤗 Hub
139
  model = SentenceTransformer("lucagafner/NDA_finetuned_V1")
140
  # Run inference
141
+
 
 
 
 
142
  embeddings = model.encode(sentences)
143
  print(embeddings.shape)
144
  # [3, 768]
 
198
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
199
  | type | string | string |
200
  | details | <ul><li>min: 3 tokens</li><li>mean: 18.18 tokens</li><li>max: 81 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 41.53 tokens</li><li>max: 183 tokens</li></ul> |
201
+ |
 
 
 
 
 
202
  * Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
203
 
204
  ### Training Hyperparameters