finetune-new
This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7404
- Cer: 29.5162
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: reduce_lr_on_plateau
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|---|---|---|---|---|
| 0.5602 | 1.0 | 1262 | 0.6160 | 24.7346 |
| 0.4761 | 2.0 | 2524 | 0.6140 | 24.7332 |
| 0.4084 | 3.0 | 3786 | 0.6206 | 23.6285 |
| 0.3623 | 4.0 | 5048 | 0.6383 | 22.0688 |
| 0.3264 | 5.0 | 6310 | 0.6624 | 23.9800 |
| 0.3022 | 6.0 | 7572 | 0.6915 | 25.2344 |
| 0.291 | 7.0 | 8834 | 0.7153 | 28.1998 |
| 0.2677 | 8.0 | 10096 | 0.7404 | 29.5162 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu129
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 5
Model tree for kwspringkles/finetune-new
Base model
openai/whisper-medium