MPNet base trained on AllNLI triplets
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("korruz/mpnet-base-all-nli-triplet")
# Run inference
sentences = [
    'A dog is swimming.',
    'A dog with yellow fur swims, neck deep, in water.',
    'A white dog with a stick in his mouth standing next to a black dog.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset: all-nli-dev
- Evaluated with TripletEvaluator
| Metric | Value | 
|---|---|
| cosine_accuracy | 0.906 | 
| dot_accuracy | 0.0939 | 
| manhattan_accuracy | 0.9008 | 
| euclidean_accuracy | 0.9017 | 
| max_accuracy | 0.906 | 
Triplet
- Dataset: all-nli-test
- Evaluated with TripletEvaluator
| Metric | Value | 
|---|---|
| cosine_accuracy | 0.9186 | 
| dot_accuracy | 0.0802 | 
| manhattan_accuracy | 0.9142 | 
| euclidean_accuracy | 0.9142 | 
| max_accuracy | 0.9186 | 
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 100,000 training samples
- Columns: anchor,positive, andnegative
- Approximate statistics based on the first 1000 samples:anchor positive negative type string string string details - min: 7 tokens
- mean: 10.46 tokens
- max: 46 tokens
 - min: 6 tokens
- mean: 12.81 tokens
- max: 40 tokens
 - min: 5 tokens
- mean: 13.4 tokens
- max: 50 tokens
 
- Samples:anchor positive negative A person on a horse jumps over a broken down airplane.A person is outdoors, on a horse.A person is at a diner, ordering an omelette.Children smiling and waving at cameraThere are children presentThe kids are frowningA boy is jumping on skateboard in the middle of a red bridge.The boy does a skateboarding trick.The boy skates down the sidewalk.
- Loss: MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
- eval_strategy: steps
- per_device_train_batch_size: 16
- per_device_eval_batch_size: 16
- learning_rate: 2e-05
- num_train_epochs: 1
- warmup_ratio: 0.1
- fp16: True
- batch_sampler: no_duplicates
All Hyperparameters
Click to expand
- overwrite_output_dir: False
- do_predict: False
- eval_strategy: steps
- prediction_loss_only: True
- per_device_train_batch_size: 16
- per_device_eval_batch_size: 16
- per_gpu_train_batch_size: None
- per_gpu_eval_batch_size: None
- gradient_accumulation_steps: 1
- eval_accumulation_steps: None
- torch_empty_cache_steps: None
- learning_rate: 2e-05
- weight_decay: 0.0
- adam_beta1: 0.9
- adam_beta2: 0.999
- adam_epsilon: 1e-08
- max_grad_norm: 1.0
- num_train_epochs: 1
- max_steps: -1
- lr_scheduler_type: linear
- lr_scheduler_kwargs: {}
- warmup_ratio: 0.1
- warmup_steps: 0
- log_level: passive
- log_level_replica: warning
- log_on_each_node: True
- logging_nan_inf_filter: True
- save_safetensors: True
- save_on_each_node: False
- save_only_model: False
- restore_callback_states_from_checkpoint: False
- no_cuda: False
- use_cpu: False
- use_mps_device: False
- seed: 42
- data_seed: None
- jit_mode_eval: False
- use_ipex: False
- bf16: False
- fp16: True
- fp16_opt_level: O1
- half_precision_backend: auto
- bf16_full_eval: False
- fp16_full_eval: False
- tf32: None
- local_rank: 0
- ddp_backend: None
- tpu_num_cores: None
- tpu_metrics_debug: False
- debug: []
- dataloader_drop_last: False
- dataloader_num_workers: 0
- dataloader_prefetch_factor: None
- past_index: -1
- disable_tqdm: False
- remove_unused_columns: True
- label_names: None
- load_best_model_at_end: False
- ignore_data_skip: False
- fsdp: []
- fsdp_min_num_params: 0
- fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- fsdp_transformer_layer_cls_to_wrap: None
- accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- deepspeed: None
- label_smoothing_factor: 0.0
- optim: adamw_torch
- optim_args: None
- adafactor: False
- group_by_length: False
- length_column_name: length
- ddp_find_unused_parameters: None
- ddp_bucket_cap_mb: None
- ddp_broadcast_buffers: False
- dataloader_pin_memory: True
- dataloader_persistent_workers: False
- skip_memory_metrics: True
- use_legacy_prediction_loop: False
- push_to_hub: False
- resume_from_checkpoint: None
- hub_model_id: None
- hub_strategy: every_save
- hub_private_repo: False
- hub_always_push: False
- gradient_checkpointing: False
- gradient_checkpointing_kwargs: None
- include_inputs_for_metrics: False
- eval_do_concat_batches: True
- fp16_backend: auto
- push_to_hub_model_id: None
- push_to_hub_organization: None
- mp_parameters:
- auto_find_batch_size: False
- full_determinism: False
- torchdynamo: None
- ray_scope: last
- ddp_timeout: 1800
- torch_compile: False
- torch_compile_backend: None
- torch_compile_mode: None
- dispatch_batches: None
- split_batches: None
- include_tokens_per_second: False
- include_num_input_tokens_seen: False
- neftune_noise_alpha: None
- optim_target_modules: None
- batch_eval_metrics: False
- eval_on_start: False
- eval_use_gather_object: False
- batch_sampler: no_duplicates
- multi_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy | 
|---|---|---|---|---|
| 0 | 0 | - | 0.6832 | - | 
| 0.032 | 100 | 3.2593 | 0.8010 | - | 
| 0.064 | 200 | 1.318 | 0.8152 | - | 
| 0.096 | 300 | 1.2552 | 0.8256 | - | 
| 0.128 | 400 | 1.3322 | 0.8141 | - | 
| 0.16 | 500 | 1.4141 | 0.8224 | - | 
| 0.192 | 600 | 1.2339 | 0.8149 | - | 
| 0.224 | 700 | 1.2556 | 0.8091 | - | 
| 0.256 | 800 | 1.138 | 0.8262 | - | 
| 0.288 | 900 | 1.0928 | 0.8311 | - | 
| 0.32 | 1000 | 1.0438 | 0.8341 | - | 
| 0.352 | 1100 | 1.1159 | 0.8323 | - | 
| 0.384 | 1200 | 1.1909 | 0.8472 | - | 
| 0.416 | 1300 | 1.2542 | 0.8543 | - | 
| 0.448 | 1400 | 1.2359 | 0.8574 | - | 
| 0.48 | 1500 | 1.0265 | 0.8712 | - | 
| 0.512 | 1600 | 0.8688 | 0.8783 | - | 
| 0.544 | 1700 | 0.8819 | 0.8841 | - | 
| 0.576 | 1800 | 0.8903 | 0.8931 | - | 
| 0.608 | 1900 | 0.9334 | 0.8858 | - | 
| 0.64 | 2000 | 1.0225 | 0.9028 | - | 
| 0.672 | 2100 | 0.9252 | 0.9034 | - | 
| 0.704 | 2200 | 0.9036 | 0.9033 | - | 
| 0.736 | 2300 | 0.8122 | 0.9040 | - | 
| 0.768 | 2400 | 0.8503 | 0.9058 | - | 
| 0.8 | 2500 | 0.8448 | 0.9055 | - | 
| 0.832 | 2600 | 0.7918 | 0.9039 | - | 
| 0.864 | 2700 | 0.7787 | 0.9025 | - | 
| 0.896 | 2800 | 0.8624 | 0.9034 | - | 
| 0.928 | 2900 | 0.9513 | 0.9058 | - | 
| 0.96 | 3000 | 0.6548 | 0.9072 | - | 
| 0.992 | 3100 | 0.0163 | 0.9060 | - | 
| 1.0 | 3125 | - | - | 0.9186 | 
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
- Downloads last month
- 1
Model tree for korruz/mpnet-base-all-nli-triplet
Base model
microsoft/mpnet-baseDataset used to train korruz/mpnet-base-all-nli-triplet
Evaluation results
- Cosine Accuracy on all nli devself-reported0.906
- Dot Accuracy on all nli devself-reported0.094
- Manhattan Accuracy on all nli devself-reported0.901
- Euclidean Accuracy on all nli devself-reported0.902
- Max Accuracy on all nli devself-reported0.906
- Cosine Accuracy on all nli testself-reported0.919
- Dot Accuracy on all nli testself-reported0.080
- Manhattan Accuracy on all nli testself-reported0.914
- Euclidean Accuracy on all nli testself-reported0.914
- Max Accuracy on all nli testself-reported0.919