ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.3639
 - Accuracy: 0.92
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
 - train_batch_size: 2
 - eval_batch_size: 2
 - seed: 42
 - gradient_accumulation_steps: 4
 - total_train_batch_size: 8
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: linear
 - lr_scheduler_warmup_ratio: 0.1
 - num_epochs: 10
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 
|---|---|---|---|---|
| 1.0693 | 1.0 | 112 | 0.6245 | 0.83 | 
| 0.6084 | 2.0 | 225 | 0.5320 | 0.81 | 
| 0.5394 | 3.0 | 337 | 0.4683 | 0.85 | 
| 0.1575 | 4.0 | 450 | 0.5772 | 0.87 | 
| 0.0049 | 5.0 | 562 | 0.4796 | 0.88 | 
| 0.0014 | 6.0 | 675 | 0.4202 | 0.94 | 
| 0.0002 | 7.0 | 787 | 0.4796 | 0.9 | 
| 0.0002 | 8.0 | 900 | 0.3534 | 0.89 | 
| 0.1367 | 9.0 | 1012 | 0.3734 | 0.91 | 
| 0.0001 | 9.96 | 1120 | 0.3639 | 0.92 | 
Framework versions
- Transformers 4.32.0.dev0
 - Pytorch 2.0.1
 - Datasets 2.13.1
 - Tokenizers 0.13.3
 
- Downloads last month
 - -
 
Model tree for karanjakhar/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
Base model
MIT/ast-finetuned-audioset-10-10-0.4593