ynat-model
This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue-ynat dataset. It achieves the following results on the evaluation set:
- Loss: 0.4272
- Accuracy: 0.8588
- Precision: 0.8532
- Recall: 0.8677
- F1: 0.8596
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.2269 | 1.0 | 714 | 0.5291 | 0.8380 | 0.8396 | 0.8595 | 0.8459 |
| 0.2395 | 2.0 | 1428 | 0.4272 | 0.8588 | 0.8532 | 0.8677 | 0.8596 |
| 0.1591 | 3.0 | 2142 | 0.4809 | 0.8544 | 0.8440 | 0.8648 | 0.8538 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 6
Model tree for kangminimi/ynat-model
Base model
monologg/koelectra-base-v3-discriminator