File size: 1,984 Bytes
27527c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
library_name: transformers
language:
- ko
license: apache-2.0
base_model: monologg/koelectra-base-v3-discriminator
tags:
- text-classification
- KoELECTRA
- Korean-NLP
- topic-classification
- news-classification
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: ynat-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ynat-model
This model is a fine-tuned version of [monologg/koelectra-base-v3-discriminator](https://huggingface.co/monologg/koelectra-base-v3-discriminator) on the klue-ynat dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4199
- Accuracy: 0.8556
- Precision: 0.8457
- Recall: 0.8692
- F1: 0.8567
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.4034 | 1.0 | 714 | 0.4602 | 0.8385 | 0.8170 | 0.8706 | 0.8406 |
| 0.2907 | 2.0 | 1428 | 0.4091 | 0.8520 | 0.8436 | 0.8697 | 0.8551 |
| 0.2268 | 3.0 | 2142 | 0.4199 | 0.8556 | 0.8457 | 0.8692 | 0.8567 |
### Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
|