ynat-model
This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue-ynat dataset. It achieves the following results on the evaluation set:
- Loss: 0.4199
- Accuracy: 0.8556
- Precision: 0.8457
- Recall: 0.8692
- F1: 0.8567
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.4034 | 1.0 | 714 | 0.4602 | 0.8385 | 0.8170 | 0.8706 | 0.8406 |
| 0.2907 | 2.0 | 1428 | 0.4091 | 0.8520 | 0.8436 | 0.8697 | 0.8551 |
| 0.2268 | 3.0 | 2142 | 0.4199 | 0.8556 | 0.8457 | 0.8692 | 0.8567 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 13
Model tree for junbeom2/ynat-model
Base model
monologg/koelectra-base-v3-discriminator