iqbalasrif's picture
Upload WhisperForConditionalGeneration
8ad5a18 verified
metadata
base_model: openai/whisper-tiny.en
datasets:
  - lalipa/jv_id_asr_split
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: finetune
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: lalipa/jv_id_asr_split jv_id_asr_source
          type: lalipa/jv_id_asr_split
          config: jv_id_asr_source
          split: validation
          args: jv_id_asr_source
        metrics:
          - type: wer
            value: 0.7835602493955974
            name: Wer

finetune

This model is a fine-tuned version of openai/whisper-tiny.en on the lalipa/jv_id_asr_split jv_id_asr_source dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7784
  • Wer: 0.7836
  • Cer: 0.2535

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 30
  • training_steps: 150

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.6903 0.2041 30 2.9875 1.0127 0.4365
2.533 0.4082 60 2.2360 0.8879 0.2921
2.0604 0.6122 90 1.9514 0.8253 0.2670
1.852 0.8163 120 1.8182 0.7949 0.2581
1.7929 1.0204 150 1.7784 0.7836 0.2535

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1
  • Datasets 3.0.1
  • Tokenizers 0.20.0