glot500_model_fr_gsd
This model is a fine-tuned version of cis-lmu/glot500-base on the universal_dependencies dataset. It achieves the following results on the evaluation set:
- Loss: 0.1267
 - Precision: 0.9609
 - Recall: 0.9603
 - F1: 0.9606
 - Accuracy: 0.9654
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
 - train_batch_size: 16
 - eval_batch_size: 16
 - seed: 42
 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: linear
 - num_epochs: 2
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | 
|---|---|---|---|---|---|---|---|
| 0.9175 | 1.0 | 904 | 0.1582 | 0.9548 | 0.9541 | 0.9544 | 0.9601 | 
| 0.1162 | 2.0 | 1808 | 0.1267 | 0.9609 | 0.9603 | 0.9606 | 0.9654 | 
Framework versions
- Transformers 4.46.3
 - Pytorch 2.5.1
 - Datasets 3.1.0
 - Tokenizers 0.20.3
 
- Downloads last month
 - -
 
Model tree for ibrahimbukhari1998/glot500_model_fr_gsd
Base model
cis-lmu/glot500-baseDataset used to train ibrahimbukhari1998/glot500_model_fr_gsd
Evaluation results
- Precision on universal_dependenciestest set self-reported0.961
 - Recall on universal_dependenciestest set self-reported0.960
 - F1 on universal_dependenciestest set self-reported0.961
 - Accuracy on universal_dependenciestest set self-reported0.965