koelectra-small-clue-mrc
This model is a fine-tuned version of monologg/koelectra-small-discriminator on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.8581
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| No log | 1.0 | 10 | 4.6897 |
| No log | 2.0 | 20 | 4.4693 |
| No log | 3.0 | 30 | 4.2655 |
| No log | 4.0 | 40 | 4.0839 |
| No log | 5.0 | 50 | 3.9436 |
| No log | 6.0 | 60 | 3.8337 |
| No log | 7.0 | 70 | 3.7263 |
| No log | 8.0 | 80 | 3.6341 |
| No log | 9.0 | 90 | 3.5482 |
| No log | 10.0 | 100 | 3.4676 |
| No log | 11.0 | 110 | 3.4204 |
| No log | 12.0 | 120 | 3.3777 |
| No log | 13.0 | 130 | 3.3747 |
| No log | 14.0 | 140 | 3.3718 |
| No log | 15.0 | 150 | 3.3744 |
| No log | 16.0 | 160 | 3.3705 |
| No log | 17.0 | 170 | 3.4027 |
| No log | 18.0 | 180 | 3.4602 |
| No log | 19.0 | 190 | 3.4393 |
| No log | 20.0 | 200 | 3.4334 |
| No log | 21.0 | 210 | 3.4517 |
| No log | 22.0 | 220 | 3.5102 |
| No log | 23.0 | 230 | 3.4325 |
| No log | 24.0 | 240 | 3.5081 |
| No log | 25.0 | 250 | 3.6420 |
| No log | 26.0 | 260 | 3.4309 |
| No log | 27.0 | 270 | 3.6206 |
| No log | 28.0 | 280 | 3.5686 |
| No log | 29.0 | 290 | 3.5590 |
| No log | 30.0 | 300 | 3.6886 |
| No log | 31.0 | 310 | 3.6212 |
| No log | 32.0 | 320 | 3.6698 |
| No log | 33.0 | 330 | 3.6788 |
| No log | 34.0 | 340 | 3.7010 |
| No log | 35.0 | 350 | 3.6021 |
| No log | 36.0 | 360 | 3.7157 |
| No log | 37.0 | 370 | 3.7417 |
| No log | 38.0 | 380 | 3.7430 |
| No log | 39.0 | 390 | 3.7674 |
| No log | 40.0 | 400 | 3.7571 |
| No log | 41.0 | 410 | 3.7722 |
| No log | 42.0 | 420 | 3.7632 |
| No log | 43.0 | 430 | 3.7932 |
| No log | 44.0 | 440 | 3.7984 |
| No log | 45.0 | 450 | 3.7543 |
| No log | 46.0 | 460 | 3.7958 |
| No log | 47.0 | 470 | 3.7896 |
| No log | 48.0 | 480 | 3.8006 |
| No log | 49.0 | 490 | 3.7804 |
| 2.5056 | 50.0 | 500 | 3.8028 |
| 2.5056 | 51.0 | 510 | 3.7837 |
| 2.5056 | 52.0 | 520 | 3.8119 |
| 2.5056 | 53.0 | 530 | 3.7886 |
| 2.5056 | 54.0 | 540 | 3.8160 |
| 2.5056 | 55.0 | 550 | 3.8105 |
| 2.5056 | 56.0 | 560 | 3.8317 |
| 2.5056 | 57.0 | 570 | 3.8297 |
| 2.5056 | 58.0 | 580 | 3.8404 |
| 2.5056 | 59.0 | 590 | 3.8278 |
| 2.5056 | 60.0 | 600 | 3.8303 |
| 2.5056 | 61.0 | 610 | 3.8366 |
| 2.5056 | 62.0 | 620 | 3.7981 |
| 2.5056 | 63.0 | 630 | 3.8200 |
| 2.5056 | 64.0 | 640 | 3.8334 |
| 2.5056 | 65.0 | 650 | 3.8134 |
| 2.5056 | 66.0 | 660 | 3.8372 |
| 2.5056 | 67.0 | 670 | 3.8387 |
| 2.5056 | 68.0 | 680 | 3.8292 |
| 2.5056 | 69.0 | 690 | 3.8438 |
| 2.5056 | 70.0 | 700 | 3.8319 |
| 2.5056 | 71.0 | 710 | 3.8410 |
| 2.5056 | 72.0 | 720 | 3.8494 |
| 2.5056 | 73.0 | 730 | 3.8498 |
| 2.5056 | 74.0 | 740 | 3.8341 |
| 2.5056 | 75.0 | 750 | 3.8738 |
| 2.5056 | 76.0 | 760 | 3.8724 |
| 2.5056 | 77.0 | 770 | 3.8130 |
| 2.5056 | 78.0 | 780 | 3.8290 |
| 2.5056 | 79.0 | 790 | 3.8730 |
| 2.5056 | 80.0 | 800 | 3.8412 |
| 2.5056 | 81.0 | 810 | 3.8470 |
| 2.5056 | 82.0 | 820 | 3.8599 |
| 2.5056 | 83.0 | 830 | 3.8423 |
| 2.5056 | 84.0 | 840 | 3.8392 |
| 2.5056 | 85.0 | 850 | 3.8661 |
| 2.5056 | 86.0 | 860 | 3.8680 |
| 2.5056 | 87.0 | 870 | 3.8677 |
| 2.5056 | 88.0 | 880 | 3.8614 |
| 2.5056 | 89.0 | 890 | 3.8483 |
| 2.5056 | 90.0 | 900 | 3.8629 |
| 2.5056 | 91.0 | 910 | 3.8731 |
| 2.5056 | 92.0 | 920 | 3.8622 |
| 2.5056 | 93.0 | 930 | 3.8396 |
| 2.5056 | 94.0 | 940 | 3.8424 |
| 2.5056 | 95.0 | 950 | 3.8392 |
| 2.5056 | 96.0 | 960 | 3.8437 |
| 2.5056 | 97.0 | 970 | 3.8513 |
| 2.5056 | 98.0 | 980 | 3.8566 |
| 2.5056 | 99.0 | 990 | 3.8581 |
| 1.3292 | 100.0 | 1000 | 3.8581 |
Framework versions
- Transformers 4.53.2
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- 5
Model tree for holic25/koelectra-small-clue-mrc
Base model
monologg/koelectra-small-discriminator