|
|
--- |
|
|
library_name: hivex |
|
|
original_train_name: DroneBasedReforestation_difficulty_5_task_0_run_id_2_train |
|
|
tags: |
|
|
- hivex |
|
|
- hivex-drone-based-reforestation |
|
|
- reinforcement-learning |
|
|
- multi-agent-reinforcement-learning |
|
|
model-index: |
|
|
- name: hivex-DBR-PPO-baseline-task-0-difficulty-5 |
|
|
results: |
|
|
- task: |
|
|
type: main-task |
|
|
name: main_task |
|
|
task-id: 0 |
|
|
difficulty-id: 5 |
|
|
dataset: |
|
|
name: hivex-drone-based-reforestation |
|
|
type: hivex-drone-based-reforestation |
|
|
metrics: |
|
|
- type: cumulative_distance_reward |
|
|
value: 2.7580876886844634 +/- 0.7562888045399391 |
|
|
name: Cumulative Distance Reward |
|
|
verified: true |
|
|
- type: cumulative_distance_until_tree_drop |
|
|
value: 78.29452056884766 +/- 14.296043451183179 |
|
|
name: Cumulative Distance Until Tree Drop |
|
|
verified: true |
|
|
- type: cumulative_distance_to_existing_trees |
|
|
value: 50.473754501342775 +/- 11.98073606874106 |
|
|
name: Cumulative Distance to Existing Trees |
|
|
verified: true |
|
|
- type: cumulative_normalized_distance_until_tree_drop |
|
|
value: 0.2758087694644928 +/- 0.07562888371330763 |
|
|
name: Cumulative Normalized Distance Until Tree Drop |
|
|
verified: true |
|
|
- type: cumulative_tree_drop_reward |
|
|
value: 7.088011031150818 +/- 1.7168094182484812 |
|
|
name: Cumulative Tree Drop Reward |
|
|
verified: true |
|
|
- type: out_of_energy_count |
|
|
value: 0.9958095240592957 +/- 0.022119619288807686 |
|
|
name: Out of Energy Count |
|
|
verified: true |
|
|
- type: recharge_energy_count |
|
|
value: 9.258539686203003 +/- 0.587428694662249 |
|
|
name: Recharge Energy Count |
|
|
verified: true |
|
|
- type: tree_drop_count |
|
|
value: 0.9893650794029236 +/- 0.03160683668166852 |
|
|
name: Tree Drop Count |
|
|
verified: true |
|
|
- type: cumulative_reward |
|
|
value: 10.612933225631714 +/- 2.659049482325796 |
|
|
name: Cumulative Reward |
|
|
verified: true |
|
|
--- |
|
|
|
|
|
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task <code>0</code> with difficulty <code>5</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>Environment: **Drone-Based Reforestation**<br>Task: <code>0</code><br>Difficulty: <code>5</code><br>Algorithm: <code>PPO</code><br>Episode Length: <code>2000</code><br>Training <code>max_steps</code>: <code>1200000</code><br>Testing <code>max_steps</code>: <code>300000</code><br><br>Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>Download the [Environment](https://github.com/hivex-research/hivex-environments) |
|
|
|
|
|
[hivex-paper]: https://arxiv.org/abs/2501.04180 |