metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- ingredients_yes_no
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ingredients
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ingredients_yes_no
type: ingredients_yes_no
args: IngredientsYesNo
metrics:
- name: Precision
type: precision
value: 0.9847619047619047
- name: Recall
type: recall
value: 0.988527724665392
- name: F1
type: f1
value: 0.9866412213740458
- name: Accuracy
type: accuracy
value: 0.9974453590689754
distilbert-base-uncased-finetuned-ingredients
This model is a fine-tuned version of distilbert-base-uncased on the ingredients_yes_no dataset. It achieves the following results on the evaluation set:
- Loss: 0.0138
- Precision: 0.9848
- Recall: 0.9885
- F1: 0.9866
- Accuracy: 0.9974
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 83 | 0.1004 | 0.8978 | 0.9235 | 0.9105 | 0.9807 |
| No log | 2.0 | 166 | 0.0237 | 0.9714 | 0.9751 | 0.9733 | 0.9940 |
| No log | 3.0 | 249 | 0.0204 | 0.9715 | 0.9771 | 0.9743 | 0.9929 |
| No log | 4.0 | 332 | 0.0138 | 0.9773 | 0.9866 | 0.9819 | 0.9969 |
| No log | 5.0 | 415 | 0.0137 | 0.9829 | 0.9866 | 0.9847 | 0.9969 |
| No log | 6.0 | 498 | 0.0134 | 0.9847 | 0.9866 | 0.9857 | 0.9972 |
| 0.0923 | 7.0 | 581 | 0.0160 | 0.9866 | 0.9885 | 0.9876 | 0.9972 |
| 0.0923 | 8.0 | 664 | 0.0147 | 0.9848 | 0.9885 | 0.9866 | 0.9974 |
| 0.0923 | 9.0 | 747 | 0.0139 | 0.9848 | 0.9885 | 0.9866 | 0.9974 |
| 0.0923 | 10.0 | 830 | 0.0138 | 0.9848 | 0.9885 | 0.9866 | 0.9974 |
Framework versions
- Transformers 4.10.0
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3