Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold3

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6884
  • Qwk: 0.6378
  • Mse: 0.6879
  • Rmse: 0.8294

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 11.8411 -0.0280 11.8388 3.4408
No log 2.0 4 9.9786 -0.0008 9.9768 3.1586
No log 3.0 6 8.1487 0.0 8.1469 2.8543
No log 4.0 8 6.6969 0.0 6.6952 2.5875
No log 5.0 10 5.6451 0.0166 5.6438 2.3757
No log 6.0 12 4.6807 0.0038 4.6795 2.1632
No log 7.0 14 3.8214 0.0 3.8203 1.9546
No log 8.0 16 3.0570 0.0 3.0560 1.7481
No log 9.0 18 2.4563 0.1492 2.4554 1.5670
No log 10.0 20 1.9425 0.0202 1.9416 1.3934
No log 11.0 22 1.5149 0.0202 1.5141 1.2305
No log 12.0 24 1.2024 0.0102 1.2018 1.0963
No log 13.0 26 0.9718 0.0102 0.9713 0.9855
No log 14.0 28 0.8796 0.2722 0.8792 0.9376
No log 15.0 30 0.8422 0.1454 0.8418 0.9175
No log 16.0 32 0.8392 0.0694 0.8389 0.9159
No log 17.0 34 0.8166 0.1596 0.8164 0.9035
No log 18.0 36 0.8480 0.1957 0.8478 0.9208
No log 19.0 38 0.6988 0.3640 0.6987 0.8359
No log 20.0 40 0.6543 0.4189 0.6543 0.8089
No log 21.0 42 0.6727 0.5195 0.6728 0.8202
No log 22.0 44 0.6913 0.5580 0.6914 0.8315
No log 23.0 46 0.7161 0.5887 0.7160 0.8462
No log 24.0 48 0.7537 0.5982 0.7535 0.8680
No log 25.0 50 0.7787 0.5646 0.7785 0.8823
No log 26.0 52 0.8045 0.5589 0.8042 0.8968
No log 27.0 54 0.8682 0.5975 0.8677 0.9315
No log 28.0 56 0.7792 0.5610 0.7789 0.8825
No log 29.0 58 0.7150 0.6100 0.7146 0.8453
No log 30.0 60 0.9378 0.5606 0.9371 0.9680
No log 31.0 62 0.7212 0.6190 0.7207 0.8490
No log 32.0 64 0.7669 0.5611 0.7665 0.8755
No log 33.0 66 0.9732 0.5421 0.9723 0.9860
No log 34.0 68 1.2088 0.5054 1.2079 1.0990
No log 35.0 70 0.6971 0.6143 0.6966 0.8346
No log 36.0 72 0.6469 0.6414 0.6465 0.8040
No log 37.0 74 0.7697 0.6123 0.7690 0.8769
No log 38.0 76 0.7532 0.6151 0.7525 0.8675
No log 39.0 78 0.6917 0.6164 0.6912 0.8314
No log 40.0 80 0.6870 0.6368 0.6864 0.8285
No log 41.0 82 0.6382 0.6378 0.6377 0.7986
No log 42.0 84 0.6742 0.6273 0.6737 0.8208
No log 43.0 86 0.6300 0.6417 0.6296 0.7935
No log 44.0 88 0.6357 0.6435 0.6352 0.7970
No log 45.0 90 0.7985 0.6052 0.7979 0.8933
No log 46.0 92 0.7070 0.6111 0.7065 0.8405
No log 47.0 94 0.7545 0.6034 0.7540 0.8683
No log 48.0 96 0.7686 0.6061 0.7680 0.8764
No log 49.0 98 0.7335 0.6310 0.7330 0.8562
No log 50.0 100 0.7875 0.6226 0.7869 0.8871
No log 51.0 102 0.7215 0.6172 0.7210 0.8491
No log 52.0 104 0.7103 0.6159 0.7098 0.8425
No log 53.0 106 0.7645 0.6012 0.7639 0.8740
No log 54.0 108 0.6865 0.6244 0.6860 0.8282
No log 55.0 110 0.7578 0.5984 0.7572 0.8702
No log 56.0 112 0.6662 0.6460 0.6657 0.8159
No log 57.0 114 0.6616 0.6500 0.6612 0.8131
No log 58.0 116 0.6928 0.6375 0.6923 0.8321
No log 59.0 118 0.6599 0.6411 0.6594 0.8121
No log 60.0 120 0.6505 0.6582 0.6501 0.8063
No log 61.0 122 0.7237 0.5967 0.7232 0.8504
No log 62.0 124 0.6983 0.6121 0.6978 0.8353
No log 63.0 126 0.6479 0.6406 0.6475 0.8047
No log 64.0 128 0.6878 0.6342 0.6873 0.8291
No log 65.0 130 0.7415 0.6114 0.7409 0.8608
No log 66.0 132 0.7204 0.6251 0.7198 0.8484
No log 67.0 134 0.6598 0.6252 0.6593 0.8120
No log 68.0 136 0.6659 0.6027 0.6655 0.8158
No log 69.0 138 0.6622 0.6487 0.6617 0.8135
No log 70.0 140 0.7494 0.6068 0.7488 0.8653
No log 71.0 142 0.7290 0.6126 0.7285 0.8535
No log 72.0 144 0.6421 0.6600 0.6416 0.8010
No log 73.0 146 0.6170 0.6322 0.6166 0.7853
No log 74.0 148 0.6108 0.6510 0.6104 0.7813
No log 75.0 150 0.6383 0.6579 0.6378 0.7987
No log 76.0 152 0.7009 0.6266 0.7004 0.8369
No log 77.0 154 0.7044 0.6275 0.7038 0.8389
No log 78.0 156 0.6650 0.6468 0.6646 0.8152
No log 79.0 158 0.6701 0.6406 0.6696 0.8183
No log 80.0 160 0.6516 0.6534 0.6511 0.8069
No log 81.0 162 0.6612 0.6494 0.6608 0.8129
No log 82.0 164 0.6858 0.6296 0.6854 0.8279
No log 83.0 166 0.6991 0.6282 0.6986 0.8358
No log 84.0 168 0.6865 0.6367 0.6861 0.8283
No log 85.0 170 0.6643 0.6553 0.6639 0.8148
No log 86.0 172 0.6597 0.6549 0.6592 0.8119
No log 87.0 174 0.6722 0.6322 0.6717 0.8196
No log 88.0 176 0.6652 0.6408 0.6648 0.8153
No log 89.0 178 0.6726 0.6346 0.6721 0.8198
No log 90.0 180 0.6629 0.6513 0.6624 0.8139
No log 91.0 182 0.6664 0.6470 0.6660 0.8161
No log 92.0 184 0.6884 0.6378 0.6879 0.8294

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold3

Finetuned
(6041)
this model