Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6752
  • Qwk: 0.6000
  • Mse: 0.6752
  • Rmse: 0.8217

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 9.0615 0.0 9.0615 3.0102
No log 2.0 4 7.6467 0.0 7.6467 2.7653
No log 3.0 6 6.9302 0.0 6.9302 2.6325
No log 4.0 8 6.0991 0.0135 6.0991 2.4696
No log 5.0 10 5.3158 0.0115 5.3158 2.3056
No log 6.0 12 4.5422 0.0039 4.5422 2.1312
No log 7.0 14 3.8261 0.0 3.8261 1.9560
No log 8.0 16 3.0635 0.0 3.0635 1.7503
No log 9.0 18 2.4307 0.0883 2.4307 1.5591
No log 10.0 20 1.8796 0.0484 1.8796 1.3710
No log 11.0 22 1.4767 0.0316 1.4767 1.2152
No log 12.0 24 1.1632 0.0316 1.1632 1.0785
No log 13.0 26 0.9444 0.0212 0.9444 0.9718
No log 14.0 28 0.8075 0.3541 0.8075 0.8986
No log 15.0 30 0.7375 0.2101 0.7375 0.8588
No log 16.0 32 0.6830 0.1927 0.6830 0.8264
No log 17.0 34 0.6923 0.1844 0.6923 0.8320
No log 18.0 36 0.7135 0.1904 0.7135 0.8447
No log 19.0 38 0.6358 0.2744 0.6358 0.7974
No log 20.0 40 0.6446 0.4066 0.6446 0.8028
No log 21.0 42 0.6765 0.4931 0.6765 0.8225
No log 22.0 44 0.5178 0.5778 0.5178 0.7196
No log 23.0 46 0.6448 0.5538 0.6448 0.8030
No log 24.0 48 0.4608 0.6478 0.4608 0.6788
No log 25.0 50 0.7700 0.5642 0.7700 0.8775
No log 26.0 52 0.5754 0.6658 0.5754 0.7585
No log 27.0 54 0.6436 0.6720 0.6436 0.8023
No log 28.0 56 1.1233 0.5339 1.1233 1.0599
No log 29.0 58 0.5608 0.6643 0.5608 0.7489
No log 30.0 60 0.5343 0.6672 0.5343 0.7310
No log 31.0 62 0.9756 0.5601 0.9756 0.9877
No log 32.0 64 0.5057 0.6710 0.5057 0.7111
No log 33.0 66 0.5248 0.6557 0.5248 0.7244
No log 34.0 68 0.9109 0.5749 0.9109 0.9544
No log 35.0 70 0.5171 0.6658 0.5171 0.7191
No log 36.0 72 0.4774 0.6385 0.4774 0.6909
No log 37.0 74 0.7698 0.5947 0.7698 0.8774
No log 38.0 76 0.7877 0.5861 0.7877 0.8875
No log 39.0 78 0.4753 0.6465 0.4753 0.6894
No log 40.0 80 0.5676 0.6389 0.5676 0.7534
No log 41.0 82 0.5678 0.6396 0.5678 0.7535
No log 42.0 84 0.5175 0.6471 0.5175 0.7194
No log 43.0 86 0.5954 0.6388 0.5954 0.7716
No log 44.0 88 0.4905 0.6223 0.4905 0.7003
No log 45.0 90 0.5035 0.6116 0.5035 0.7096
No log 46.0 92 0.5796 0.6304 0.5796 0.7613
No log 47.0 94 0.6752 0.6000 0.6752 0.8217

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold0

Finetuned
(6015)
this model