Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold0
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6752
- Qwk: 0.6000
- Mse: 0.6752
- Rmse: 0.8217
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|---|---|---|---|---|---|---|
| No log | 1.0 | 2 | 9.0615 | 0.0 | 9.0615 | 3.0102 |
| No log | 2.0 | 4 | 7.6467 | 0.0 | 7.6467 | 2.7653 |
| No log | 3.0 | 6 | 6.9302 | 0.0 | 6.9302 | 2.6325 |
| No log | 4.0 | 8 | 6.0991 | 0.0135 | 6.0991 | 2.4696 |
| No log | 5.0 | 10 | 5.3158 | 0.0115 | 5.3158 | 2.3056 |
| No log | 6.0 | 12 | 4.5422 | 0.0039 | 4.5422 | 2.1312 |
| No log | 7.0 | 14 | 3.8261 | 0.0 | 3.8261 | 1.9560 |
| No log | 8.0 | 16 | 3.0635 | 0.0 | 3.0635 | 1.7503 |
| No log | 9.0 | 18 | 2.4307 | 0.0883 | 2.4307 | 1.5591 |
| No log | 10.0 | 20 | 1.8796 | 0.0484 | 1.8796 | 1.3710 |
| No log | 11.0 | 22 | 1.4767 | 0.0316 | 1.4767 | 1.2152 |
| No log | 12.0 | 24 | 1.1632 | 0.0316 | 1.1632 | 1.0785 |
| No log | 13.0 | 26 | 0.9444 | 0.0212 | 0.9444 | 0.9718 |
| No log | 14.0 | 28 | 0.8075 | 0.3541 | 0.8075 | 0.8986 |
| No log | 15.0 | 30 | 0.7375 | 0.2101 | 0.7375 | 0.8588 |
| No log | 16.0 | 32 | 0.6830 | 0.1927 | 0.6830 | 0.8264 |
| No log | 17.0 | 34 | 0.6923 | 0.1844 | 0.6923 | 0.8320 |
| No log | 18.0 | 36 | 0.7135 | 0.1904 | 0.7135 | 0.8447 |
| No log | 19.0 | 38 | 0.6358 | 0.2744 | 0.6358 | 0.7974 |
| No log | 20.0 | 40 | 0.6446 | 0.4066 | 0.6446 | 0.8028 |
| No log | 21.0 | 42 | 0.6765 | 0.4931 | 0.6765 | 0.8225 |
| No log | 22.0 | 44 | 0.5178 | 0.5778 | 0.5178 | 0.7196 |
| No log | 23.0 | 46 | 0.6448 | 0.5538 | 0.6448 | 0.8030 |
| No log | 24.0 | 48 | 0.4608 | 0.6478 | 0.4608 | 0.6788 |
| No log | 25.0 | 50 | 0.7700 | 0.5642 | 0.7700 | 0.8775 |
| No log | 26.0 | 52 | 0.5754 | 0.6658 | 0.5754 | 0.7585 |
| No log | 27.0 | 54 | 0.6436 | 0.6720 | 0.6436 | 0.8023 |
| No log | 28.0 | 56 | 1.1233 | 0.5339 | 1.1233 | 1.0599 |
| No log | 29.0 | 58 | 0.5608 | 0.6643 | 0.5608 | 0.7489 |
| No log | 30.0 | 60 | 0.5343 | 0.6672 | 0.5343 | 0.7310 |
| No log | 31.0 | 62 | 0.9756 | 0.5601 | 0.9756 | 0.9877 |
| No log | 32.0 | 64 | 0.5057 | 0.6710 | 0.5057 | 0.7111 |
| No log | 33.0 | 66 | 0.5248 | 0.6557 | 0.5248 | 0.7244 |
| No log | 34.0 | 68 | 0.9109 | 0.5749 | 0.9109 | 0.9544 |
| No log | 35.0 | 70 | 0.5171 | 0.6658 | 0.5171 | 0.7191 |
| No log | 36.0 | 72 | 0.4774 | 0.6385 | 0.4774 | 0.6909 |
| No log | 37.0 | 74 | 0.7698 | 0.5947 | 0.7698 | 0.8774 |
| No log | 38.0 | 76 | 0.7877 | 0.5861 | 0.7877 | 0.8875 |
| No log | 39.0 | 78 | 0.4753 | 0.6465 | 0.4753 | 0.6894 |
| No log | 40.0 | 80 | 0.5676 | 0.6389 | 0.5676 | 0.7534 |
| No log | 41.0 | 82 | 0.5678 | 0.6396 | 0.5678 | 0.7535 |
| No log | 42.0 | 84 | 0.5175 | 0.6471 | 0.5175 | 0.7194 |
| No log | 43.0 | 86 | 0.5954 | 0.6388 | 0.5954 | 0.7716 |
| No log | 44.0 | 88 | 0.4905 | 0.6223 | 0.4905 | 0.7003 |
| No log | 45.0 | 90 | 0.5035 | 0.6116 | 0.5035 | 0.7096 |
| No log | 46.0 | 92 | 0.5796 | 0.6304 | 0.5796 | 0.7613 |
| No log | 47.0 | 94 | 0.6752 | 0.6000 | 0.6752 | 0.8217 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- -
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold0
Base model
google-bert/bert-base-uncased