Version_weird_ASAP_FineTuningBERT_AugV12_k4_task1_organization_k4_k4_fold1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5833
  • Qwk: 0.6360
  • Mse: 0.5835
  • Rmse: 0.7639

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 12.5034 -0.0020 12.5002 3.5356
No log 2.0 4 8.3897 0.0037 8.3869 2.8960
No log 3.0 6 6.3653 0.0 6.3630 2.5225
No log 4.0 8 6.1554 0.0 6.1531 2.4805
No log 5.0 10 6.0165 0.0 6.0142 2.4524
No log 6.0 12 5.8634 0.0 5.8612 2.4210
No log 7.0 14 5.6874 -0.0116 5.6852 2.3844
No log 8.0 16 5.4621 0.0 5.4600 2.3367
No log 9.0 18 5.0674 0.0 5.0653 2.2506
No log 10.0 20 4.4759 0.0 4.4739 2.1152
No log 11.0 22 3.8115 0.0 3.8096 1.9518
No log 12.0 24 3.3092 0.0 3.3073 1.8186
No log 13.0 26 2.8915 0.0 2.8897 1.6999
No log 14.0 28 2.3926 -0.0052 2.3909 1.5462
No log 15.0 30 1.8879 0.0775 1.8863 1.3734
No log 16.0 32 1.5242 0.0443 1.5227 1.2340
No log 17.0 34 1.3924 0.0443 1.3909 1.1794
No log 18.0 36 1.1098 0.0443 1.1085 1.0528
No log 19.0 38 0.8987 0.0427 0.8975 0.9474
No log 20.0 40 0.8200 0.3204 0.8189 0.9049
No log 21.0 42 0.7605 0.3571 0.7595 0.8715
No log 22.0 44 0.7864 0.2386 0.7857 0.8864
No log 23.0 46 0.6612 0.4274 0.6603 0.8126
No log 24.0 48 0.6539 0.3900 0.6534 0.8083
No log 25.0 50 0.5958 0.5034 0.5951 0.7714
No log 26.0 52 0.5802 0.5228 0.5796 0.7613
No log 27.0 54 0.6060 0.5756 0.6058 0.7783
No log 28.0 56 0.7729 0.4983 0.7718 0.8785
No log 29.0 58 0.8793 0.5342 0.8795 0.9378
No log 30.0 60 0.7162 0.5870 0.7162 0.8463
No log 31.0 62 0.6815 0.6182 0.6816 0.8256
No log 32.0 64 1.0220 0.5485 1.0224 1.0112
No log 33.0 66 0.8476 0.5967 0.8480 0.9209
No log 34.0 68 0.8040 0.6256 0.8045 0.8969
No log 35.0 70 0.8548 0.6130 0.8554 0.9249
No log 36.0 72 0.8360 0.6097 0.8366 0.9146
No log 37.0 74 0.5906 0.6741 0.5908 0.7687
No log 38.0 76 1.1955 0.5262 1.1965 1.0938
No log 39.0 78 0.7989 0.6282 0.7996 0.8942
No log 40.0 80 0.7281 0.5577 0.7275 0.8530
No log 41.0 82 0.7894 0.6188 0.7901 0.8889
No log 42.0 84 1.5941 0.4605 1.5951 1.2630
No log 43.0 86 0.6386 0.6294 0.6390 0.7994
No log 44.0 88 0.7303 0.6086 0.7307 0.8548
No log 45.0 90 2.4491 0.3427 2.4500 1.5652
No log 46.0 92 2.6163 0.3282 2.6172 1.6178
No log 47.0 94 0.8246 0.6022 0.8254 0.9085
No log 48.0 96 0.6979 0.6280 0.6985 0.8358
No log 49.0 98 1.3443 0.4983 1.3454 1.1599
No log 50.0 100 0.8539 0.5902 0.8547 0.9245
No log 51.0 102 0.7015 0.6580 0.7021 0.8379
No log 52.0 104 0.9372 0.5923 0.9381 0.9686
No log 53.0 106 0.6184 0.6314 0.6188 0.7866
No log 54.0 108 0.6768 0.6571 0.6775 0.8231
No log 55.0 110 1.3143 0.5009 1.3156 1.1470
No log 56.0 112 0.9127 0.5827 0.9137 0.9559
No log 57.0 114 0.5833 0.6360 0.5835 0.7639

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k4_task1_organization_k4_k4_fold1

Finetuned
(5992)
this model