Version_weird_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold0
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7629
- Qwk: 0.6053
- Mse: 0.7629
- Rmse: 0.8734
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|---|---|---|---|---|---|---|
| No log | 1.0 | 1 | 12.3902 | -0.0005 | 12.3902 | 3.5200 |
| No log | 2.0 | 2 | 10.3294 | 0.0059 | 10.3294 | 3.2139 |
| No log | 3.0 | 3 | 9.1206 | 0.0054 | 9.1206 | 3.0200 |
| No log | 4.0 | 4 | 8.4621 | 0.0054 | 8.4621 | 2.9090 |
| No log | 5.0 | 5 | 7.7304 | 0.0018 | 7.7304 | 2.7804 |
| No log | 6.0 | 6 | 6.9409 | 0.0 | 6.9409 | 2.6346 |
| No log | 7.0 | 7 | 6.1525 | 0.0169 | 6.1525 | 2.4804 |
| No log | 8.0 | 8 | 5.4167 | 0.0208 | 5.4167 | 2.3274 |
| No log | 9.0 | 9 | 4.7812 | 0.0153 | 4.7812 | 2.1866 |
| No log | 10.0 | 10 | 4.2472 | 0.0153 | 4.2472 | 2.0609 |
| No log | 11.0 | 11 | 3.7737 | 0.0153 | 3.7737 | 1.9426 |
| No log | 12.0 | 12 | 3.3622 | 0.0115 | 3.3622 | 1.8336 |
| No log | 13.0 | 13 | 3.0331 | 0.0115 | 3.0331 | 1.7416 |
| No log | 14.0 | 14 | 2.6461 | 0.0117 | 2.6461 | 1.6267 |
| No log | 15.0 | 15 | 2.2819 | 0.1234 | 2.2819 | 1.5106 |
| No log | 16.0 | 16 | 2.0168 | 0.1133 | 2.0168 | 1.4202 |
| No log | 17.0 | 17 | 1.7730 | 0.0715 | 1.7730 | 1.3316 |
| No log | 18.0 | 18 | 1.5971 | 0.0520 | 1.5971 | 1.2638 |
| No log | 19.0 | 19 | 1.4253 | 0.0520 | 1.4253 | 1.1939 |
| No log | 20.0 | 20 | 1.2575 | 0.0520 | 1.2575 | 1.1214 |
| No log | 21.0 | 21 | 1.1046 | 0.0520 | 1.1046 | 1.0510 |
| No log | 22.0 | 22 | 0.9880 | 0.0618 | 0.9880 | 0.9940 |
| No log | 23.0 | 23 | 0.8958 | 0.0618 | 0.8958 | 0.9464 |
| No log | 24.0 | 24 | 0.8295 | 0.2458 | 0.8295 | 0.9108 |
| No log | 25.0 | 25 | 0.8132 | 0.2265 | 0.8132 | 0.9018 |
| No log | 26.0 | 26 | 0.7176 | 0.3850 | 0.7176 | 0.8471 |
| No log | 27.0 | 27 | 0.7161 | 0.4544 | 0.7161 | 0.8463 |
| No log | 28.0 | 28 | 0.6742 | 0.4952 | 0.6742 | 0.8211 |
| No log | 29.0 | 29 | 0.6074 | 0.4108 | 0.6074 | 0.7793 |
| No log | 30.0 | 30 | 0.6170 | 0.3583 | 0.6170 | 0.7855 |
| No log | 31.0 | 31 | 0.5919 | 0.3712 | 0.5919 | 0.7693 |
| No log | 32.0 | 32 | 0.5195 | 0.4543 | 0.5195 | 0.7207 |
| No log | 33.0 | 33 | 0.5007 | 0.4705 | 0.5007 | 0.7076 |
| No log | 34.0 | 34 | 0.5175 | 0.4440 | 0.5175 | 0.7194 |
| No log | 35.0 | 35 | 0.5095 | 0.4590 | 0.5095 | 0.7138 |
| No log | 36.0 | 36 | 0.4991 | 0.4768 | 0.4991 | 0.7065 |
| No log | 37.0 | 37 | 0.4994 | 0.5020 | 0.4994 | 0.7066 |
| No log | 38.0 | 38 | 0.5234 | 0.4948 | 0.5234 | 0.7235 |
| No log | 39.0 | 39 | 0.5398 | 0.5474 | 0.5398 | 0.7347 |
| No log | 40.0 | 40 | 0.5243 | 0.5971 | 0.5243 | 0.7241 |
| No log | 41.0 | 41 | 0.4788 | 0.6236 | 0.4788 | 0.6919 |
| No log | 42.0 | 42 | 0.4973 | 0.6310 | 0.4973 | 0.7052 |
| No log | 43.0 | 43 | 0.6258 | 0.5767 | 0.6258 | 0.7911 |
| No log | 44.0 | 44 | 0.6556 | 0.5606 | 0.6556 | 0.8097 |
| No log | 45.0 | 45 | 0.5658 | 0.6284 | 0.5658 | 0.7522 |
| No log | 46.0 | 46 | 0.5147 | 0.6417 | 0.5147 | 0.7175 |
| No log | 47.0 | 47 | 0.5682 | 0.6278 | 0.5682 | 0.7538 |
| No log | 48.0 | 48 | 0.7327 | 0.5414 | 0.7327 | 0.8560 |
| No log | 49.0 | 49 | 0.7759 | 0.5427 | 0.7759 | 0.8809 |
| No log | 50.0 | 50 | 0.6243 | 0.6153 | 0.6243 | 0.7901 |
| No log | 51.0 | 51 | 0.4932 | 0.6668 | 0.4932 | 0.7023 |
| No log | 52.0 | 52 | 0.4874 | 0.6632 | 0.4874 | 0.6981 |
| No log | 53.0 | 53 | 0.5617 | 0.6571 | 0.5617 | 0.7495 |
| No log | 54.0 | 54 | 0.8427 | 0.5468 | 0.8427 | 0.9180 |
| No log | 55.0 | 55 | 0.9615 | 0.5312 | 0.9615 | 0.9805 |
| No log | 56.0 | 56 | 0.8340 | 0.5581 | 0.8340 | 0.9132 |
| No log | 57.0 | 57 | 0.5854 | 0.6567 | 0.5854 | 0.7651 |
| No log | 58.0 | 58 | 0.5087 | 0.6438 | 0.5087 | 0.7132 |
| No log | 59.0 | 59 | 0.5314 | 0.6397 | 0.5314 | 0.7290 |
| No log | 60.0 | 60 | 0.5162 | 0.6414 | 0.5162 | 0.7184 |
| No log | 61.0 | 61 | 0.5543 | 0.6591 | 0.5543 | 0.7445 |
| No log | 62.0 | 62 | 0.8115 | 0.5666 | 0.8115 | 0.9008 |
| No log | 63.0 | 63 | 0.9717 | 0.5242 | 0.9717 | 0.9857 |
| No log | 64.0 | 64 | 0.9490 | 0.5292 | 0.9490 | 0.9742 |
| No log | 65.0 | 65 | 0.7830 | 0.5738 | 0.7830 | 0.8849 |
| No log | 66.0 | 66 | 0.5852 | 0.6586 | 0.5852 | 0.7650 |
| No log | 67.0 | 67 | 0.5275 | 0.6670 | 0.5275 | 0.7263 |
| No log | 68.0 | 68 | 0.5212 | 0.6703 | 0.5212 | 0.7220 |
| No log | 69.0 | 69 | 0.5429 | 0.6670 | 0.5429 | 0.7368 |
| No log | 70.0 | 70 | 0.6495 | 0.6234 | 0.6495 | 0.8059 |
| No log | 71.0 | 71 | 0.7158 | 0.6080 | 0.7158 | 0.8460 |
| No log | 72.0 | 72 | 0.6933 | 0.6043 | 0.6933 | 0.8327 |
| No log | 73.0 | 73 | 0.7384 | 0.6015 | 0.7384 | 0.8593 |
| No log | 74.0 | 74 | 0.6809 | 0.6132 | 0.6809 | 0.8252 |
| No log | 75.0 | 75 | 0.6062 | 0.6338 | 0.6062 | 0.7786 |
| No log | 76.0 | 76 | 0.5985 | 0.6353 | 0.5985 | 0.7736 |
| No log | 77.0 | 77 | 0.6443 | 0.6217 | 0.6443 | 0.8027 |
| No log | 78.0 | 78 | 0.6265 | 0.6279 | 0.6265 | 0.7915 |
| No log | 79.0 | 79 | 0.5696 | 0.6464 | 0.5696 | 0.7547 |
| No log | 80.0 | 80 | 0.5210 | 0.6663 | 0.5210 | 0.7218 |
| No log | 81.0 | 81 | 0.5173 | 0.6671 | 0.5173 | 0.7192 |
| No log | 82.0 | 82 | 0.5259 | 0.6633 | 0.5259 | 0.7252 |
| No log | 83.0 | 83 | 0.5527 | 0.6653 | 0.5527 | 0.7435 |
| No log | 84.0 | 84 | 0.6141 | 0.6471 | 0.6141 | 0.7836 |
| No log | 85.0 | 85 | 0.7278 | 0.6118 | 0.7278 | 0.8531 |
| No log | 86.0 | 86 | 0.7962 | 0.6064 | 0.7962 | 0.8923 |
| No log | 87.0 | 87 | 0.8039 | 0.6014 | 0.8039 | 0.8966 |
| No log | 88.0 | 88 | 0.7629 | 0.6053 | 0.7629 | 0.8734 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold0
Base model
google-bert/bert-base-uncased