Version_weird_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7629
  • Qwk: 0.6053
  • Mse: 0.7629
  • Rmse: 0.8734

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 1 12.3902 -0.0005 12.3902 3.5200
No log 2.0 2 10.3294 0.0059 10.3294 3.2139
No log 3.0 3 9.1206 0.0054 9.1206 3.0200
No log 4.0 4 8.4621 0.0054 8.4621 2.9090
No log 5.0 5 7.7304 0.0018 7.7304 2.7804
No log 6.0 6 6.9409 0.0 6.9409 2.6346
No log 7.0 7 6.1525 0.0169 6.1525 2.4804
No log 8.0 8 5.4167 0.0208 5.4167 2.3274
No log 9.0 9 4.7812 0.0153 4.7812 2.1866
No log 10.0 10 4.2472 0.0153 4.2472 2.0609
No log 11.0 11 3.7737 0.0153 3.7737 1.9426
No log 12.0 12 3.3622 0.0115 3.3622 1.8336
No log 13.0 13 3.0331 0.0115 3.0331 1.7416
No log 14.0 14 2.6461 0.0117 2.6461 1.6267
No log 15.0 15 2.2819 0.1234 2.2819 1.5106
No log 16.0 16 2.0168 0.1133 2.0168 1.4202
No log 17.0 17 1.7730 0.0715 1.7730 1.3316
No log 18.0 18 1.5971 0.0520 1.5971 1.2638
No log 19.0 19 1.4253 0.0520 1.4253 1.1939
No log 20.0 20 1.2575 0.0520 1.2575 1.1214
No log 21.0 21 1.1046 0.0520 1.1046 1.0510
No log 22.0 22 0.9880 0.0618 0.9880 0.9940
No log 23.0 23 0.8958 0.0618 0.8958 0.9464
No log 24.0 24 0.8295 0.2458 0.8295 0.9108
No log 25.0 25 0.8132 0.2265 0.8132 0.9018
No log 26.0 26 0.7176 0.3850 0.7176 0.8471
No log 27.0 27 0.7161 0.4544 0.7161 0.8463
No log 28.0 28 0.6742 0.4952 0.6742 0.8211
No log 29.0 29 0.6074 0.4108 0.6074 0.7793
No log 30.0 30 0.6170 0.3583 0.6170 0.7855
No log 31.0 31 0.5919 0.3712 0.5919 0.7693
No log 32.0 32 0.5195 0.4543 0.5195 0.7207
No log 33.0 33 0.5007 0.4705 0.5007 0.7076
No log 34.0 34 0.5175 0.4440 0.5175 0.7194
No log 35.0 35 0.5095 0.4590 0.5095 0.7138
No log 36.0 36 0.4991 0.4768 0.4991 0.7065
No log 37.0 37 0.4994 0.5020 0.4994 0.7066
No log 38.0 38 0.5234 0.4948 0.5234 0.7235
No log 39.0 39 0.5398 0.5474 0.5398 0.7347
No log 40.0 40 0.5243 0.5971 0.5243 0.7241
No log 41.0 41 0.4788 0.6236 0.4788 0.6919
No log 42.0 42 0.4973 0.6310 0.4973 0.7052
No log 43.0 43 0.6258 0.5767 0.6258 0.7911
No log 44.0 44 0.6556 0.5606 0.6556 0.8097
No log 45.0 45 0.5658 0.6284 0.5658 0.7522
No log 46.0 46 0.5147 0.6417 0.5147 0.7175
No log 47.0 47 0.5682 0.6278 0.5682 0.7538
No log 48.0 48 0.7327 0.5414 0.7327 0.8560
No log 49.0 49 0.7759 0.5427 0.7759 0.8809
No log 50.0 50 0.6243 0.6153 0.6243 0.7901
No log 51.0 51 0.4932 0.6668 0.4932 0.7023
No log 52.0 52 0.4874 0.6632 0.4874 0.6981
No log 53.0 53 0.5617 0.6571 0.5617 0.7495
No log 54.0 54 0.8427 0.5468 0.8427 0.9180
No log 55.0 55 0.9615 0.5312 0.9615 0.9805
No log 56.0 56 0.8340 0.5581 0.8340 0.9132
No log 57.0 57 0.5854 0.6567 0.5854 0.7651
No log 58.0 58 0.5087 0.6438 0.5087 0.7132
No log 59.0 59 0.5314 0.6397 0.5314 0.7290
No log 60.0 60 0.5162 0.6414 0.5162 0.7184
No log 61.0 61 0.5543 0.6591 0.5543 0.7445
No log 62.0 62 0.8115 0.5666 0.8115 0.9008
No log 63.0 63 0.9717 0.5242 0.9717 0.9857
No log 64.0 64 0.9490 0.5292 0.9490 0.9742
No log 65.0 65 0.7830 0.5738 0.7830 0.8849
No log 66.0 66 0.5852 0.6586 0.5852 0.7650
No log 67.0 67 0.5275 0.6670 0.5275 0.7263
No log 68.0 68 0.5212 0.6703 0.5212 0.7220
No log 69.0 69 0.5429 0.6670 0.5429 0.7368
No log 70.0 70 0.6495 0.6234 0.6495 0.8059
No log 71.0 71 0.7158 0.6080 0.7158 0.8460
No log 72.0 72 0.6933 0.6043 0.6933 0.8327
No log 73.0 73 0.7384 0.6015 0.7384 0.8593
No log 74.0 74 0.6809 0.6132 0.6809 0.8252
No log 75.0 75 0.6062 0.6338 0.6062 0.7786
No log 76.0 76 0.5985 0.6353 0.5985 0.7736
No log 77.0 77 0.6443 0.6217 0.6443 0.8027
No log 78.0 78 0.6265 0.6279 0.6265 0.7915
No log 79.0 79 0.5696 0.6464 0.5696 0.7547
No log 80.0 80 0.5210 0.6663 0.5210 0.7218
No log 81.0 81 0.5173 0.6671 0.5173 0.7192
No log 82.0 82 0.5259 0.6633 0.5259 0.7252
No log 83.0 83 0.5527 0.6653 0.5527 0.7435
No log 84.0 84 0.6141 0.6471 0.6141 0.7836
No log 85.0 85 0.7278 0.6118 0.7278 0.8531
No log 86.0 86 0.7962 0.6064 0.7962 0.8923
No log 87.0 87 0.8039 0.6014 0.8039 0.8966
No log 88.0 88 0.7629 0.6053 0.7629 0.8734

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold0

Finetuned
(6037)
this model