Version3_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7743
  • Qwk: 0.5245
  • Mse: 0.7743
  • Rmse: 0.8800

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 9.2496 -0.0001 9.2496 3.0413
No log 2.0 4 6.9806 0.0 6.9806 2.6421
No log 3.0 6 5.0875 0.0201 5.0875 2.2555
No log 4.0 8 4.2141 0.0039 4.2141 2.0528
No log 5.0 10 3.0463 0.0 3.0463 1.7454
No log 6.0 12 2.3445 0.1320 2.3445 1.5312
No log 7.0 14 1.8738 0.0484 1.8738 1.3689
No log 8.0 16 1.3862 0.0316 1.3862 1.1774
No log 9.0 18 1.0828 0.0316 1.0828 1.0406
No log 10.0 20 0.9196 0.0661 0.9196 0.9589
No log 11.0 22 0.7370 0.4070 0.7370 0.8585
No log 12.0 24 0.7468 0.4012 0.7468 0.8642
No log 13.0 26 0.6084 0.4026 0.6084 0.7800
No log 14.0 28 0.6307 0.4334 0.6307 0.7942
No log 15.0 30 0.6221 0.5217 0.6221 0.7888
No log 16.0 32 0.7180 0.5114 0.7180 0.8473
No log 17.0 34 0.5187 0.5016 0.5187 0.7202
No log 18.0 36 0.6071 0.5379 0.6071 0.7792
No log 19.0 38 0.6245 0.5279 0.6245 0.7903
No log 20.0 40 0.5582 0.5267 0.5582 0.7472
No log 21.0 42 0.7587 0.4711 0.7587 0.8710
No log 22.0 44 0.6011 0.5265 0.6011 0.7753
No log 23.0 46 0.5856 0.5897 0.5856 0.7653
No log 24.0 48 0.6329 0.5303 0.6329 0.7955
No log 25.0 50 0.6139 0.5825 0.6139 0.7835
No log 26.0 52 0.6415 0.5727 0.6415 0.8010
No log 27.0 54 0.6984 0.5271 0.6984 0.8357
No log 28.0 56 0.6809 0.5511 0.6809 0.8252
No log 29.0 58 0.6917 0.5530 0.6917 0.8317
No log 30.0 60 0.7515 0.5086 0.7515 0.8669
No log 31.0 62 0.7920 0.5083 0.7920 0.8900
No log 32.0 64 0.7633 0.5447 0.7633 0.8737
No log 33.0 66 0.7891 0.4764 0.7891 0.8883
No log 34.0 68 0.7580 0.5260 0.7580 0.8706
No log 35.0 70 1.0103 0.5116 1.0103 1.0051
No log 36.0 72 0.8362 0.5414 0.8362 0.9144
No log 37.0 74 0.8107 0.5121 0.8107 0.9004
No log 38.0 76 0.7855 0.5603 0.7855 0.8863
No log 39.0 78 0.7393 0.5635 0.7393 0.8598
No log 40.0 80 0.7141 0.5282 0.7141 0.8450
No log 41.0 82 0.8185 0.5529 0.8185 0.9047
No log 42.0 84 0.8006 0.5570 0.8006 0.8947
No log 43.0 86 0.7743 0.5245 0.7743 0.8800

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version3_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold0

Finetuned
(6032)
this model