Version3ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7538
  • Qwk: 0.6266
  • Mse: 0.7534
  • Rmse: 0.8680

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 9.7241 0.0 9.7217 3.1180
No log 2.0 4 9.2016 0.0 9.1992 3.0330
No log 3.0 6 8.3283 0.0 8.3260 2.8855
No log 4.0 8 6.9089 0.0 6.9066 2.6280
No log 5.0 10 5.3850 0.0322 5.3829 2.3201
No log 6.0 12 4.1929 0.0079 4.1908 2.0472
No log 7.0 14 3.3207 0.0 3.3187 1.8217
No log 8.0 16 2.8357 0.0 2.8339 1.6834
No log 9.0 18 2.2620 0.1721 2.2601 1.5034
No log 10.0 20 1.7518 0.0482 1.7501 1.3229
No log 11.0 22 1.4853 0.0 1.4838 1.2181
No log 12.0 24 1.1288 0.0 1.1274 1.0618
No log 13.0 26 0.9611 0.0 0.9597 0.9797
No log 14.0 28 0.9226 0.1287 0.9214 0.9599
No log 15.0 30 0.8485 0.0784 0.8473 0.9205
No log 16.0 32 0.8796 0.0660 0.8786 0.9373
No log 17.0 34 0.9571 0.0660 0.9562 0.9778
No log 18.0 36 0.8815 0.1155 0.8806 0.9384
No log 19.0 38 1.0250 0.3560 1.0243 1.0121
No log 20.0 40 0.8997 0.4176 0.8989 0.9481
No log 21.0 42 0.7637 0.4738 0.7630 0.8735
No log 22.0 44 1.0284 0.4218 1.0279 1.0138
No log 23.0 46 0.5614 0.6122 0.5607 0.7488
No log 24.0 48 0.4625 0.6427 0.4619 0.6796
No log 25.0 50 0.8144 0.5907 0.8140 0.9022
No log 26.0 52 0.4296 0.7126 0.4290 0.6550
No log 27.0 54 0.5208 0.6802 0.5204 0.7214
No log 28.0 56 1.2385 0.5301 1.2383 1.1128
No log 29.0 58 0.5258 0.6850 0.5254 0.7248
No log 30.0 60 0.5192 0.7047 0.5187 0.7202
No log 31.0 62 0.9142 0.6134 0.9140 0.9560
No log 32.0 64 0.4861 0.7137 0.4856 0.6969
No log 33.0 66 0.6462 0.6628 0.6457 0.8036
No log 34.0 68 1.4212 0.5138 1.4209 1.1920
No log 35.0 70 0.7236 0.6381 0.7231 0.8504
No log 36.0 72 0.7302 0.6425 0.7297 0.8543
No log 37.0 74 1.1707 0.5470 1.1704 1.0819
No log 38.0 76 0.5452 0.6978 0.5447 0.7381
No log 39.0 78 0.5341 0.7089 0.5337 0.7305
No log 40.0 80 1.4149 0.5133 1.4148 1.1894
No log 41.0 82 1.7980 0.4546 1.7979 1.3408
No log 42.0 84 0.8995 0.6082 0.8992 0.9482
No log 43.0 86 0.7184 0.6500 0.7180 0.8474
No log 44.0 88 1.1911 0.5454 1.1909 1.0913
No log 45.0 90 1.1181 0.5487 1.1178 1.0573
No log 46.0 92 0.5903 0.7003 0.5899 0.7680
No log 47.0 94 0.5930 0.6970 0.5926 0.7698
No log 48.0 96 1.1001 0.5489 1.0998 1.0487
No log 49.0 98 1.1428 0.5413 1.1425 1.0689
No log 50.0 100 0.7863 0.6209 0.7860 0.8865
No log 51.0 102 0.6395 0.6730 0.6391 0.7995
No log 52.0 104 0.7538 0.6266 0.7534 0.8680

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version3ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold1

Finetuned
(6015)
this model