Version3ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6628
  • Qwk: 0.6169
  • Mse: 0.6628
  • Rmse: 0.8141

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 3 8.6894 0.0 8.6894 2.9478
No log 2.0 6 7.1508 0.0 7.1508 2.6741
No log 3.0 9 6.1796 -0.0223 6.1796 2.4859
No log 4.0 12 5.0489 0.0077 5.0489 2.2470
No log 5.0 15 3.9470 0.0039 3.9470 1.9867
No log 6.0 18 2.9441 0.0 2.9441 1.7158
No log 7.0 21 2.1053 0.0601 2.1053 1.4510
No log 8.0 24 1.4740 0.0316 1.4740 1.2141
No log 9.0 27 1.1165 0.0106 1.1165 1.0566
No log 10.0 30 0.8320 0.2712 0.8320 0.9121
No log 11.0 33 0.7768 0.1122 0.7768 0.8813
No log 12.0 36 0.8030 0.0521 0.8030 0.8961
No log 13.0 39 0.8769 0.0521 0.8769 0.9364
No log 14.0 42 1.0193 0.2721 1.0193 1.0096
No log 15.0 45 1.0655 0.3087 1.0655 1.0322
No log 16.0 48 1.0367 0.3652 1.0367 1.0182
No log 17.0 51 0.5579 0.4677 0.5579 0.7470
No log 18.0 54 0.7125 0.5098 0.7125 0.8441
No log 19.0 57 0.6865 0.5073 0.6865 0.8285
No log 20.0 60 0.9630 0.5471 0.9630 0.9813
No log 21.0 63 0.9938 0.4577 0.9938 0.9969
No log 22.0 66 0.9722 0.4831 0.9722 0.9860
No log 23.0 69 0.6949 0.5642 0.6949 0.8336
No log 24.0 72 1.0135 0.5395 1.0135 1.0067
No log 25.0 75 0.7379 0.6330 0.7379 0.8590
No log 26.0 78 0.5702 0.6383 0.5702 0.7551
No log 27.0 81 0.9379 0.5543 0.9379 0.9685
No log 28.0 84 0.5647 0.6465 0.5647 0.7515
No log 29.0 87 0.8128 0.5990 0.8128 0.9016
No log 30.0 90 0.5949 0.6378 0.5949 0.7713
No log 31.0 93 0.7179 0.6205 0.7179 0.8473
No log 32.0 96 0.7752 0.6029 0.7752 0.8804
No log 33.0 99 0.5903 0.6362 0.5903 0.7683
No log 34.0 102 0.8385 0.5874 0.8385 0.9157
No log 35.0 105 0.9683 0.5422 0.9683 0.9840
No log 36.0 108 0.5062 0.6342 0.5062 0.7115
No log 37.0 111 0.6541 0.5965 0.6541 0.8088
No log 38.0 114 0.6101 0.6094 0.6101 0.7811
No log 39.0 117 0.5205 0.6267 0.5205 0.7214
No log 40.0 120 0.5243 0.6151 0.5243 0.7241
No log 41.0 123 0.7361 0.6150 0.7361 0.8579
No log 42.0 126 0.4942 0.6253 0.4942 0.7030
No log 43.0 129 0.6450 0.6060 0.6450 0.8031
No log 44.0 132 0.6055 0.6231 0.6055 0.7781
No log 45.0 135 0.5379 0.6308 0.5379 0.7334
No log 46.0 138 0.6156 0.6335 0.6156 0.7846
No log 47.0 141 0.5515 0.6290 0.5515 0.7426
No log 48.0 144 0.6628 0.6169 0.6628 0.8141

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version3ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold0

Finetuned
(6016)
this model