Version3ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold0
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6628
- Qwk: 0.6169
- Mse: 0.6628
- Rmse: 0.8141
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|---|---|---|---|---|---|---|
| No log | 1.0 | 3 | 8.6894 | 0.0 | 8.6894 | 2.9478 |
| No log | 2.0 | 6 | 7.1508 | 0.0 | 7.1508 | 2.6741 |
| No log | 3.0 | 9 | 6.1796 | -0.0223 | 6.1796 | 2.4859 |
| No log | 4.0 | 12 | 5.0489 | 0.0077 | 5.0489 | 2.2470 |
| No log | 5.0 | 15 | 3.9470 | 0.0039 | 3.9470 | 1.9867 |
| No log | 6.0 | 18 | 2.9441 | 0.0 | 2.9441 | 1.7158 |
| No log | 7.0 | 21 | 2.1053 | 0.0601 | 2.1053 | 1.4510 |
| No log | 8.0 | 24 | 1.4740 | 0.0316 | 1.4740 | 1.2141 |
| No log | 9.0 | 27 | 1.1165 | 0.0106 | 1.1165 | 1.0566 |
| No log | 10.0 | 30 | 0.8320 | 0.2712 | 0.8320 | 0.9121 |
| No log | 11.0 | 33 | 0.7768 | 0.1122 | 0.7768 | 0.8813 |
| No log | 12.0 | 36 | 0.8030 | 0.0521 | 0.8030 | 0.8961 |
| No log | 13.0 | 39 | 0.8769 | 0.0521 | 0.8769 | 0.9364 |
| No log | 14.0 | 42 | 1.0193 | 0.2721 | 1.0193 | 1.0096 |
| No log | 15.0 | 45 | 1.0655 | 0.3087 | 1.0655 | 1.0322 |
| No log | 16.0 | 48 | 1.0367 | 0.3652 | 1.0367 | 1.0182 |
| No log | 17.0 | 51 | 0.5579 | 0.4677 | 0.5579 | 0.7470 |
| No log | 18.0 | 54 | 0.7125 | 0.5098 | 0.7125 | 0.8441 |
| No log | 19.0 | 57 | 0.6865 | 0.5073 | 0.6865 | 0.8285 |
| No log | 20.0 | 60 | 0.9630 | 0.5471 | 0.9630 | 0.9813 |
| No log | 21.0 | 63 | 0.9938 | 0.4577 | 0.9938 | 0.9969 |
| No log | 22.0 | 66 | 0.9722 | 0.4831 | 0.9722 | 0.9860 |
| No log | 23.0 | 69 | 0.6949 | 0.5642 | 0.6949 | 0.8336 |
| No log | 24.0 | 72 | 1.0135 | 0.5395 | 1.0135 | 1.0067 |
| No log | 25.0 | 75 | 0.7379 | 0.6330 | 0.7379 | 0.8590 |
| No log | 26.0 | 78 | 0.5702 | 0.6383 | 0.5702 | 0.7551 |
| No log | 27.0 | 81 | 0.9379 | 0.5543 | 0.9379 | 0.9685 |
| No log | 28.0 | 84 | 0.5647 | 0.6465 | 0.5647 | 0.7515 |
| No log | 29.0 | 87 | 0.8128 | 0.5990 | 0.8128 | 0.9016 |
| No log | 30.0 | 90 | 0.5949 | 0.6378 | 0.5949 | 0.7713 |
| No log | 31.0 | 93 | 0.7179 | 0.6205 | 0.7179 | 0.8473 |
| No log | 32.0 | 96 | 0.7752 | 0.6029 | 0.7752 | 0.8804 |
| No log | 33.0 | 99 | 0.5903 | 0.6362 | 0.5903 | 0.7683 |
| No log | 34.0 | 102 | 0.8385 | 0.5874 | 0.8385 | 0.9157 |
| No log | 35.0 | 105 | 0.9683 | 0.5422 | 0.9683 | 0.9840 |
| No log | 36.0 | 108 | 0.5062 | 0.6342 | 0.5062 | 0.7115 |
| No log | 37.0 | 111 | 0.6541 | 0.5965 | 0.6541 | 0.8088 |
| No log | 38.0 | 114 | 0.6101 | 0.6094 | 0.6101 | 0.7811 |
| No log | 39.0 | 117 | 0.5205 | 0.6267 | 0.5205 | 0.7214 |
| No log | 40.0 | 120 | 0.5243 | 0.6151 | 0.5243 | 0.7241 |
| No log | 41.0 | 123 | 0.7361 | 0.6150 | 0.7361 | 0.8579 |
| No log | 42.0 | 126 | 0.4942 | 0.6253 | 0.4942 | 0.7030 |
| No log | 43.0 | 129 | 0.6450 | 0.6060 | 0.6450 | 0.8031 |
| No log | 44.0 | 132 | 0.6055 | 0.6231 | 0.6055 | 0.7781 |
| No log | 45.0 | 135 | 0.5379 | 0.6308 | 0.5379 | 0.7334 |
| No log | 46.0 | 138 | 0.6156 | 0.6335 | 0.6156 | 0.7846 |
| No log | 47.0 | 141 | 0.5515 | 0.6290 | 0.5515 | 0.7426 |
| No log | 48.0 | 144 | 0.6628 | 0.6169 | 0.6628 | 0.8141 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Model tree for genki10/Version3ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold0
Base model
google-bert/bert-base-uncased