BERT_V8_sp10_lw40_ex100_lo100_k10_k10_fold0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8576
  • Qwk: 0.2720
  • Mse: 0.8576
  • Rmse: 0.9261

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 6 6.5736 0.0 6.5736 2.5639
No log 2.0 12 3.9041 0.0039 3.9041 1.9759
No log 3.0 18 1.7330 0.0316 1.7330 1.3164
No log 4.0 24 0.9136 0.0316 0.9136 0.9558
No log 5.0 30 0.7790 0.2771 0.7790 0.8826
No log 6.0 36 0.8344 0.2904 0.8344 0.9134
No log 7.0 42 0.6693 0.3340 0.6693 0.8181
No log 8.0 48 0.6759 0.2887 0.6759 0.8221
No log 9.0 54 0.6126 0.3542 0.6126 0.7827
No log 10.0 60 0.6793 0.3193 0.6793 0.8242
No log 11.0 66 0.7651 0.3253 0.7651 0.8747
No log 12.0 72 0.6896 0.4700 0.6896 0.8304
No log 13.0 78 0.7273 0.4175 0.7273 0.8528
No log 14.0 84 0.6511 0.4605 0.6511 0.8069
No log 15.0 90 0.7819 0.3593 0.7819 0.8843
No log 16.0 96 0.8854 0.3024 0.8854 0.9410
No log 17.0 102 0.8160 0.3395 0.8160 0.9033
No log 18.0 108 0.7487 0.3713 0.7487 0.8652
No log 19.0 114 0.8344 0.3355 0.8344 0.9135
No log 20.0 120 0.8314 0.2771 0.8314 0.9118
No log 21.0 126 0.7480 0.3727 0.7480 0.8649
No log 22.0 132 0.9940 0.2074 0.9940 0.9970
No log 23.0 138 0.7924 0.3604 0.7924 0.8902
No log 24.0 144 0.9166 0.2703 0.9166 0.9574
No log 25.0 150 0.7149 0.3915 0.7149 0.8455
No log 26.0 156 0.9768 0.2164 0.9768 0.9884
No log 27.0 162 0.7593 0.3932 0.7593 0.8714
No log 28.0 168 0.9222 0.2397 0.9222 0.9603
No log 29.0 174 0.9315 0.2310 0.9315 0.9652
No log 30.0 180 0.8535 0.2989 0.8535 0.9238
No log 31.0 186 0.7939 0.3224 0.7939 0.8910
No log 32.0 192 0.9193 0.2771 0.9193 0.9588
No log 33.0 198 0.7183 0.3959 0.7183 0.8476
No log 34.0 204 0.8705 0.2184 0.8705 0.9330
No log 35.0 210 0.9986 0.1259 0.9986 0.9993
No log 36.0 216 0.7959 0.2699 0.7959 0.8921
No log 37.0 222 0.6716 0.4293 0.6716 0.8195
No log 38.0 228 0.7933 0.3024 0.7933 0.8906
No log 39.0 234 0.8228 0.2582 0.8228 0.9071
No log 40.0 240 0.8497 0.2589 0.8497 0.9218
No log 41.0 246 0.7943 0.3045 0.7943 0.8912
No log 42.0 252 0.8576 0.2720 0.8576 0.9261

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/BERT_V8_sp10_lw40_ex100_lo100_k10_k10_fold0

Finetuned
(6110)
this model