Enhance model card for Human3R: Add metadata, links, description, and usage
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,3 +1,47 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: cc-by-nc-sa-4.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-nc-sa-4.0
|
| 3 |
+
pipeline_tag: image-to-3d
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Human3R: Everyone Everywhere All at Once
|
| 7 |
+
|
| 8 |
+
Human3R is a unified, feed-forward framework for online 4D human-scene reconstruction, in the world frame, from casually captured monocular videos. It jointly recovers global multi-person SMPL-X bodies ("everyone"), dense 3D scene ("everywhere"), and camera trajectories in a single forward pass ("all-at-once").
|
| 9 |
+
|
| 10 |
+
TL;DR: Inference with One model, One stage; Training in One day using One GPU
|
| 11 |
+
|
| 12 |
+
* **Paper**: [Human3R: Everyone Everywhere All at Once](https://huggingface.co/papers/2510.06219)
|
| 13 |
+
* **Project Page**: [https://fanegg.github.io/Human3R/](https://fanegg.github.io/Human3R/)
|
| 14 |
+
* **Code**: [https://github.com/fanegg/Human3R](https://github.com/fanegg/Human3R)
|
| 15 |
+
|
| 16 |
+
<div align="center">
|
| 17 |
+
<img src="https://github.com/user-attachments/assets/47fc7ecf-5235-471c-84b9-ccfeca6d56ea" alt="Human3R Demo" width="100%">
|
| 18 |
+
</div>
|
| 19 |
+
|
| 20 |
+
## Sample Usage
|
| 21 |
+
|
| 22 |
+
To run the inference demo, you can use the following command (assuming you have followed the installation steps from the [GitHub repository](https://github.com/fanegg/Human3R)):
|
| 23 |
+
|
| 24 |
+
```bash
|
| 25 |
+
# input can be a folder or a video
|
| 26 |
+
# the following script will run inference with Human3R and visualize the output with viser on port 8080
|
| 27 |
+
CUDA_VISIBLE_DEVICES=0 python demo.py --model_path MODEL_PATH --size 512 \
|
| 28 |
+
--seq_path SEQ_PATH --output_dir OUT_DIR --subsample 1 --use_ttt3r \
|
| 29 |
+
--vis_threshold 2 --downsample_factor 1 --reset_interval 100
|
| 30 |
+
|
| 31 |
+
# Example:
|
| 32 |
+
CUDA_VISIBLE_DEVICES=0 python demo.py --model_path src/human3r.pth --size 512 --seq_path examples/GoodMornin1.mp4 --subsample 1 --use_ttt3r --vis_threshold 2 --downsample_factor 1 --reset_interval 100 --output_dir tmp
|
| 33 |
+
```
|
| 34 |
+
Output results will be saved to `output_dir`.
|
| 35 |
+
|
| 36 |
+
## Citation
|
| 37 |
+
|
| 38 |
+
If you find our work useful, please cite:
|
| 39 |
+
|
| 40 |
+
```bibtex
|
| 41 |
+
@article{chen2025human3r,
|
| 42 |
+
title={Human3R: Everyone Everywhere All at Once},
|
| 43 |
+
author={Chen, Yue and Chen, Xingyu and Xue, Yuxuan and Chen, Anpei and Xiu, Yuliang and Gerard, Pons-Moll},
|
| 44 |
+
journal={arXiv preprint arXiv:2510.06219},
|
| 45 |
+
year={2025}
|
| 46 |
+
}
|
| 47 |
+
```
|