excalibur12's picture
Update README.md
40a033c verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-lv60
tags:
  - generated_from_trainer
  - phoneme-recognition
model-index:
  - name: wav2vec2-large-lv60_phoneme-timit_english_timit-4k
    results:
      - task:
          type: phoneme-recognition
          name: Phoneme Recognition
        dataset:
          name: TIMIT
          type: timit-asr/timit_asr
          split: test
          args: full phoneme set
        metrics:
          - name: Phone Error Rate
            type: per
            value: 0.1053
datasets:
  - timit-asr/timit_asr
language:
  - en
metrics:
  - per
library_name: transformers

wav2vec2-large-lv60_phoneme-timit_english_timit-4k

This model is a fine-tuned version of facebook/wav2vec2-large-lv60 on the TIMIT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3354
  • Phone Error Rate: 0.1053 (10.53%)

Intended uses & limitations

  • Phoneme recognition based on the TIMIT phoneme set

Phoneme-wise errors

Vowel Phonemes

Vowel confusion matrix

Stop Phonemes

Stop_consonant confusion matrix

Affricate Phonemes

Affricate_consonant confusion matrix

Fricative Phonemes

Fricative_consonant confusion matrix

Nasal Phonemes

Nasal_consonant confusion matrix

Semivowels/Glide Phonemes

Vowel confusion matrix

Training and evaluation data

  • Train: TIMIT train dataset (4620 samples)
  • Test: TIMIT test dataset (1680 samples)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss PER
7.9352 1.04 300 3.7710 0.9617
2.7874 2.08 600 0.9080 0.1929
0.8205 3.11 900 0.4670 0.1492
0.5504 4.15 1200 0.4025 0.1408
0.4632 5.19 1500 0.3696 0.1374
0.4148 6.23 1800 0.3519 0.1343
0.3873 7.27 2100 0.3419 0.1329
0.3695 8.3 2400 0.3368 0.1317
0.3531 9.34 2700 0.3406 0.1320
0.3507 10.38 3000 0.3354 0.1315

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.2