Whisper Large v3 Fine-Tuned Finnish
This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3344
- Wer: 23.0167
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 800
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.5817 | 0.42 | 50 | 0.4090 | 37.5023 |
| 0.4669 | 0.84 | 100 | 0.4374 | 35.8274 |
| 0.3154 | 1.26 | 150 | 0.4848 | 39.0484 |
| 0.2192 | 1.68 | 200 | 0.4313 | 34.6954 |
| 0.1985 | 2.1 | 250 | 0.4346 | 34.5205 |
| 0.1125 | 2.52 | 300 | 0.4307 | 32.8640 |
| 0.1039 | 2.94 | 350 | 0.4278 | 31.3271 |
| 0.067 | 3.36 | 400 | 0.4043 | 33.5542 |
| 0.0577 | 3.78 | 450 | 0.3911 | 40.7050 |
| 0.0461 | 4.2 | 500 | 0.3966 | 30.4712 |
| 0.0264 | 4.62 | 550 | 0.3630 | 27.2041 |
| 0.0204 | 5.04 | 600 | 0.3632 | 26.0353 |
| 0.0092 | 5.46 | 650 | 0.3448 | 24.4156 |
| 0.006 | 5.88 | 700 | 0.3284 | 23.9278 |
| 0.002 | 6.3 | 750 | 0.3334 | 23.2836 |
| 0.0019 | 6.72 | 800 | 0.3344 | 23.0167 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 6
Model tree for enakilci/whisper-large-v3-fi-800steps-16batch-2grad_steps-0.0001lr
Base model
openai/whisper-large-v3Dataset used to train enakilci/whisper-large-v3-fi-800steps-16batch-2grad_steps-0.0001lr
Evaluation results
- Wer on Common Voice 13.0test set self-reported23.017