Finetuned using axolotl, with the following configuration
base_model: Qwen/Qwen2.5-VL-7B-Instruct
processor_type: AutoProcessor
# these 3 lines are needed for now to handle vision chat templates w images
skip_prepare_dataset: true
remove_unused_columns: false
sample_packing: false
chat_template: qwen2_vl
datasets:
- path: e-zorzi/reasoning_distractors_choice_chat_only
type: chat_template
split: train
revision: small
test_datasets:
- path: e-zorzi/reasoning_distractors_choice_chat_only
type: chat_template
split: val_seen[:5%]
revision: small
- path: e-zorzi/reasoning_distractors_choice_chat_only
type: chat_template
split: val_unseen[:5%]
revision: small
load_in_8bit: True
adapter: lora
lora_model_dir:
sequence_len: 2048 #8192
pad_to_sequence_len: false
lora_r: 128
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules: 'model.language_model.layers.[\d]+.(mlp|cross_attn|self_attn).(up|down|gate|q|k|v|o)_proj'
gradient_accumulation_steps: 4
micro_batch_size: 16
num_epochs: 15
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.001
bf16: true
fp16:
tf32: true
gradient_checkpointing: true
logging_steps: 1
flash_attention: true
eager_attention:
warmup_ratio: 0.0067
evals_per_epoch: 3
saves_per_epoch: 1
save_strategy: epoch
weight_decay: 0.0
# save_first_step: true # uncomment this to validate checkpoint saving works with your config
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for e-zorzi/Qwen2.5-VL-7B-sft-lora-noreasoning
Base model
Qwen/Qwen2.5-VL-7B-Instruct