Finetuned using axolotl, using the following configuration
base_model: Qwen/Qwen2.5-VL-3B-Instruct
processor_type: AutoProcessor
# these 3 lines are needed for now to handle vision chat templates w images
skip_prepare_dataset: true
remove_unused_columns: false
sample_packing: false
chat_template: qwen2_vl
datasets:
- path: e-zorzi/reasoning_distractors_choice_chat
type: chat_template
split: train
revision: small
test_datasets:
- path: e-zorzi/reasoning_distractors_choice_chat
type: chat_template
split: val_seen[:10%]
revision: small
- path: e-zorzi/reasoning_distractors_choice_chat
type: chat_template
split: val_unseen[:10%]
revision: small
load_in_8bit: True
adapter: lora
lora_model_dir:
sequence_len: 2048 #8192
pad_to_sequence_len: false
lora_r: 128
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules: 'model.language_model.layers.[\d]+.(mlp|cross_attn|self_attn).(up|down|gate|q|k|v|o)_proj'
gradient_accumulation_steps: 2
micro_batch_size: 32
num_epochs: 15
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.001
bf16: true
fp16:
tf32: true
gradient_checkpointing: true
logging_steps: 1
flash_attention: true
eager_attention:
warmup_ratio: 0.0067
evals_per_epoch: 3
saves_per_epoch: 1
save_strategy: epoch
weight_decay: 0.0
# save_first_step: true # uncomment this to validate checkpoint saving works with your config
Model Card for Model ID
This modelcard aims to be a base template for new models. It has been generated using this raw template.
Model Details
Model Description
- Developed by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]
- Downloads last month
- 149
Model tree for e-zorzi/Qwen2.5-VL-3B-Instruct-sft-lora-choice-v2
Base model
Qwen/Qwen2.5-VL-3B-Instruct