SentenceTransformer
This is a sentence-transformers model trained on the train_set dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
- Learning other languages besides Chinese and English is insufficient, so additional learning is needed to optimize use of other languages.
- This model is additionally trained on the Korean dataset.
Model Description
- Model Type: Sentence Transformer
Transformer Encoder
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("dragonkue/bge-m3-ko")
sentences = [
'수급권자 중 근로 능력이 없는 임산부는 몇 종에 해당하니?',
'내년부터 저소득층 1세 미만 아동의 \n의료비 부담이 더 낮아진다!\n의료급여제도 개요\n□ (목적) 생활유지 능력이 없거나 생활이 어려운 국민들에게 발생하는 질병, 부상, 출산 등에 대해 국가가 의료서비스 제공\n□ (지원대상) 국민기초생활보장 수급권자, 타 법에 의한 수급권자 등\n\n| 구분 | 국민기초생활보장법에 의한 수급권자 | 국민기초생활보장법 이외의 타 법에 의한 수급권자 |\n| --- | --- | --- |\n| 1종 | ○ 국민기초생활보장 수급권자 중 근로능력이 없는 자만으로 구성된 가구 - 18세 미만, 65세 이상 - 4급 이내 장애인 - 임산부, 병역의무이행자 등 | ○ 이재민(재해구호법) ○ 의상자 및 의사자의 유족○ 국내 입양된 18세 미만 아동○ 국가유공자 및 그 유족․가족○ 국가무형문화재 보유자 및 그 가족○ 새터민(북한이탈주민)과 그 가족○ 5․18 민주화운동 관련자 및 그 유가족○ 노숙인 ※ 행려환자 (의료급여법 시행령) |\n| 2종 | ○ 국민기초생활보장 수급권자 중 근로능력이 있는 가구 | - |\n',
'이어 이날 오후 1시30분부터 열릴 예정이던 스노보드 여자 슬로프스타일 예선 경기는 연기를 거듭하다 취소됐다. 조직위는 예선 없이 다음 날 결선에서 참가자 27명이 한번에 경기해 순위를 가리기로 했다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
- ndcg, mrr, map metrics are metrics that consider ranking, while accuracy, precision, and recall are metrics that do not consider ranking. (Example: When considering ranking for retrieval top 10, different scores are given when the correct document is in 1st place and when it is in 10th place. However, accuracy, precision, and recall scores are the same if they are in the top 10.)
Information Retrieval
- Korean Embedding Benchmark is a benchmark with a relatively long 3/4 quantile of string length of 1024
Korean Embedding Benchmark with AutoRAG
This is a benchmark of Korean embedding models.
(https://github.com/Marker-Inc-Korea/AutoRAG-example-korean-embedding-benchmark)
| Model name |
F1 |
Recall |
Precision |
mAP |
mRR |
NDCG |
| paraphrase-multilingual-mpnet-base-v2 |
0.3596 |
0.3596 |
0.3596 |
0.3596 |
0.3596 |
0.3596 |
| KoSimCSE-roberta |
0.4298 |
0.4298 |
0.4298 |
0.4298 |
0.4298 |
0.4298 |
| Cohere embed-multilingual-v3.0 |
0.3596 |
0.3596 |
0.3596 |
0.3596 |
0.3596 |
0.3596 |
| openai ada 002 |
0.4737 |
0.4737 |
0.4737 |
0.4737 |
0.4737 |
0.4737 |
| multilingual-e5-large-instruct |
0.4649 |
0.4649 |
0.4649 |
0.4649 |
0.4649 |
0.4649 |
| Upstage Embedding |
0.6579 |
0.6579 |
0.6579 |
0.6579 |
0.6579 |
0.6579 |
| paraphrase-multilingual-MiniLM-L12-v2 |
0.2982 |
0.2982 |
0.2982 |
0.2982 |
0.2982 |
0.2982 |
| openai_embed_3_small |
0.5439 |
0.5439 |
0.5439 |
0.5439 |
0.5439 |
0.5439 |
| ko-sroberta-multitask |
0.4211 |
0.4211 |
0.4211 |
0.4211 |
0.4211 |
0.4211 |
| openai_embed_3_large |
0.6053 |
0.6053 |
0.6053 |
0.6053 |
0.6053 |
0.6053 |
| KU-HIAI-ONTHEIT-large-v1 |
0.7105 |
0.7105 |
0.7105 |
0.7105 |
0.7105 |
0.7105 |
| KU-HIAI-ONTHEIT-large-v1.1 |
0.7193 |
0.7193 |
0.7193 |
0.7193 |
0.7193 |
0.7193 |
| kf-deberta-multitask |
0.4561 |
0.4561 |
0.4561 |
0.4561 |
0.4561 |
0.4561 |
| gte-multilingual-base |
0.5877 |
0.5877 |
0.5877 |
0.5877 |
0.5877 |
0.5877 |
| KoE5 |
0.7018 |
0.7018 |
0.7018 |
0.7018 |
0.7018 |
0.7018 |
| BGE-m3 |
0.6578 |
0.6578 |
0.6578 |
0.6578 |
0.6578 |
0.6578 |
| bge-m3-korean |
0.5351 |
0.5351 |
0.5351 |
0.5351 |
0.5351 |
0.5351 |
| BGE-m3-ko |
0.7456 |
0.7456 |
0.7456 |
0.7456 |
0.7456 |
0.7456 |
| Model name |
F1 |
Recall |
Precision |
mAP |
mRR |
NDCG |
| paraphrase-multilingual-mpnet-base-v2 |
0.2368 |
0.4737 |
0.1579 |
0.2032 |
0.2032 |
0.2712 |
| KoSimCSE-roberta |
0.3026 |
0.6053 |
0.2018 |
0.2661 |
0.2661 |
0.3515 |
| Cohere embed-multilingual-v3.0 |
0.2851 |
0.5702 |
0.1901 |
0.2515 |
0.2515 |
0.3321 |
| openai ada 002 |
0.3553 |
0.7105 |
0.2368 |
0.3202 |
0.3202 |
0.4186 |
| multilingual-e5-large-instruct |
0.3333 |
0.6667 |
0.2222 |
0.2909 |
0.2909 |
0.3856 |
| Upstage Embedding |
0.4211 |
0.8421 |
0.2807 |
0.3509 |
0.3509 |
0.4743 |
| paraphrase-multilingual-MiniLM-L12-v2 |
0.2061 |
0.4123 |
0.1374 |
0.1740 |
0.1740 |
0.2340 |
| openai_embed_3_small |
0.3640 |
0.7281 |
0.2427 |
0.3026 |
0.3026 |
0.4097 |
| ko-sroberta-multitask |
0.2939 |
0.5877 |
0.1959 |
0.2500 |
0.2500 |
0.3351 |
| openai_embed_3_large |
0.3947 |
0.7895 |
0.2632 |
0.3348 |
0.3348 |
0.4491 |
| KU-HIAI-ONTHEIT-large-v1 |
0.4386 |
0.8772 |
0.2924 |
0.3421 |
0.3421 |
0.4766 |
| KU-HIAI-ONTHEIT-large-v1.1 |
0.4430 |
0.8860 |
0.2953 |
0.3406 |
0.3406 |
0.4778 |
| kf-deberta-multitask |
0.3158 |
0.6316 |
0.2105 |
0.2792 |
0.2792 |
0.3679 |
| gte-multilingual-base |
0.4035 |
0.8070 |
0.2690 |
0.3450 |
0.3450 |
0.4614 |
| KoE5 |
0.4254 |
0.8509 |
0.2836 |
0.3173 |
0.3173 |
0.4514 |
| BGE-m3 |
0.4254 |
0.8508 |
0.2836 |
0.3421 |
0.3421 |
0.4701 |
| bge-m3-korean |
0.3684 |
0.7368 |
0.2456 |
0.3143 |
0.3143 |
0.4207 |
| BGE-m3-ko |
0.4517 |
0.9035 |
0.3011 |
0.3494 |
0.3494 |
0.4886 |
| Model name |
F1 |
Recall |
Precision |
mAP |
mRR |
NDCG |
| paraphrase-multilingual-mpnet-base-v2 |
0.1813 |
0.5439 |
0.1088 |
0.1575 |
0.1575 |
0.2491 |
| KoSimCSE-roberta |
0.2164 |
0.6491 |
0.1298 |
0.1751 |
0.1751 |
0.2873 |
| Cohere embed-multilingual-v3.0 |
0.2076 |
0.6228 |
0.1246 |
0.1640 |
0.1640 |
0.2731 |
| openai ada 002 |
0.2602 |
0.7807 |
0.1561 |
0.2139 |
0.2139 |
0.3486 |
| multilingual-e5-large-instruct |
0.2544 |
0.7632 |
0.1526 |
0.2194 |
0.2194 |
0.3487 |
| Upstage Embedding |
0.2982 |
0.8947 |
0.1789 |
0.2237 |
0.2237 |
0.3822 |
| paraphrase-multilingual-MiniLM-L12-v2 |
0.1637 |
0.4912 |
0.0982 |
0.1437 |
0.1437 |
0.2264 |
| openai_embed_3_small |
0.2690 |
0.8070 |
0.1614 |
0.2148 |
0.2148 |
0.3553 |
| ko-sroberta-multitask |
0.2164 |
0.6491 |
0.1298 |
0.1697 |
0.1697 |
0.2835 |
| openai_embed_3_large |
0.2807 |
0.8421 |
0.1684 |
0.2088 |
0.2088 |
0.3586 |
| KU-HIAI-ONTHEIT-large-v1 |
0.3041 |
0.9123 |
0.1825 |
0.2137 |
0.2137 |
0.3783 |
| KU-HIAI-ONTHEIT-large-v1.1 |
0.3099 |
0.9298 |
0.1860 |
0.2148 |
0.2148 |
0.3834 |
| kf-deberta-multitask |
0.2281 |
0.6842 |
0.1368 |
0.1724 |
0.1724 |
0.2939 |
| gte-multilingual-base |
0.2865 |
0.8596 |
0.1719 |
0.2096 |
0.2096 |
0.3637 |
| KoE5 |
0.2982 |
0.8947 |
0.1789 |
0.2054 |
0.2054 |
0.3678 |
| BGE-m3 |
0.3041 |
0.9123 |
0.1825 |
0.2193 |
0.2193 |
0.3832 |
| bge-m3-korean |
0.2661 |
0.7982 |
0.1596 |
0.2116 |
0.2116 |
0.3504 |
| BGE-m3-ko |
0.3099 |
0.9298 |
0.1860 |
0.2098 |
0.2098 |
0.3793 |
| Model name |
F1 |
Recall |
Precision |
mAP |
mRR |
NDCG |
| paraphrase-multilingual-mpnet-base-v2 |
0.1212 |
0.6667 |
0.0667 |
0.1197 |
0.1197 |
0.2382 |
| KoSimCSE-roberta |
0.1324 |
0.7281 |
0.0728 |
0.1080 |
0.1080 |
0.2411 |
| Cohere embed-multilingual-v3.0 |
0.1324 |
0.7281 |
0.0728 |
0.1150 |
0.1150 |
0.2473 |
| openai ada 002 |
0.1563 |
0.8596 |
0.0860 |
0.1051 |
0.1051 |
0.2673 |
| multilingual-e5-large-instruct |
0.1483 |
0.8158 |
0.0816 |
0.0980 |
0.0980 |
0.2520 |
| Upstage Embedding |
0.1707 |
0.9386 |
0.0939 |
0.1078 |
0.1078 |
0.2848 |
| paraphrase-multilingual-MiniLM-L12-v2 |
0.1053 |
0.5789 |
0.0579 |
0.0961 |
0.0961 |
0.2006 |
| openai_embed_3_small |
0.1547 |
0.8509 |
0.0851 |
0.0984 |
0.0984 |
0.2593 |
| ko-sroberta-multitask |
0.1276 |
0.7018 |
0.0702 |
0.0986 |
0.0986 |
0.2275 |
| openai_embed_3_large |
0.1643 |
0.9035 |
0.0904 |
0.1180 |
0.1180 |
0.2855 |
| KU-HIAI-ONTHEIT-large-v1 |
0.1707 |
0.9386 |
0.0939 |
0.1105 |
0.1105 |
0.2860 |
| KU-HIAI-ONTHEIT-large-v1.1 |
0.1722 |
0.9474 |
0.0947 |
0.1033 |
0.1033 |
0.2822 |
| kf-deberta-multitask |
0.1388 |
0.7632 |
0.0763 |
0.1 |
0.1 |
0.2422 |
| gte-multilingual-base |
0.1675 |
0.9211 |
0.0921 |
0.1066 |
0.1066 |
0.2805 |
| KoE5 |
0.1675 |
0.9211 |
0.0921 |
0.1011 |
0.1011 |
0.2750 |
| BGE-m3 |
0.1707 |
0.9386 |
0.0939 |
0.1130 |
0.1130 |
0.2884 |
| bge-m3-korean |
0.1579 |
0.8684 |
0.0868 |
0.1093 |
0.1093 |
0.2721 |
| BGE-m3-ko |
0.1770 |
0.9736 |
0.0974 |
0.1097 |
0.1097 |
0.2932 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.6103 |
| cosine_accuracy@3 |
0.8169 |
| cosine_accuracy@5 |
0.8732 |
| cosine_accuracy@10 |
0.9202 |
| cosine_precision@1 |
0.6103 |
| cosine_precision@3 |
0.3787 |
| cosine_precision@5 |
0.2761 |
| cosine_precision@10 |
0.1728 |
| cosine_recall@1 |
0.3847 |
| cosine_recall@3 |
0.5902 |
| cosine_recall@5 |
0.6794 |
| cosine_recall@10 |
0.7695 |
| cosine_ndcg@10 |
0.6833 |
| cosine_mrr@10 |
0.7262 |
| cosine_map@100 |
0.6074 |
| dot_accuracy@1 |
0.6103 |
| dot_accuracy@3 |
0.8169 |
| dot_accuracy@5 |
0.8732 |
| dot_accuracy@10 |
0.9202 |
| dot_precision@1 |
0.6103 |
| dot_precision@3 |
0.3787 |
| dot_precision@5 |
0.2761 |
| dot_precision@10 |
0.1728 |
| dot_recall@1 |
0.3847 |
| dot_recall@3 |
0.5902 |
| dot_recall@5 |
0.6794 |
| dot_recall@10 |
0.7695 |
| dot_ndcg@10 |
0.6723 |
| dot_mrr@10 |
0.7262 |
| dot_map@100 |
0.6074 |
Bias, Risks and Limitations
- Since the evaluation results are different for each domain, it is necessary to compare and evaluate the model in your own domain. In the Miracl benchmark, the evaluation was conducted using the Korean Wikipedia as a corpus, and in this case, the cosine_ndcg@10 score dropped by 0.02 points after learning. However, in the Auto-RAG benchmark, which is a financial domain, the ndcg score increased by 0.09 when it was top 1. This model may be advantageous for use in a specific domain.
- Also, since the miracl benchmark consists of a corpus of relatively short strings, while the Korean Embedding Benchmark consists of a corpus of longer strings, this model may be more advantageous if the length of the corpus you want to use is long.
Training Hyperparameters
Non-Default Hyperparameters
The batch size was referenced from the following paper: Text Embeddings by Weakly-Supervised Contrastive Pre-training (https://arxiv.org/pdf/2212.03533)
eval_strategy: steps
per_device_train_batch_size: 32768
per_device_eval_batch_size: 32768
learning_rate: 3e-05
warmup_ratio: 0.03333333333333333
fp16: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 32768
per_device_eval_batch_size: 32768
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
learning_rate: 3e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 3
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.03333333333333333
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: True
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{bge-m3,
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
year={2024},
eprint={2402.03216},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@article{wang2022text,
title={Text Embeddings by Weakly-Supervised Contrastive Pre-training},
author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu},
journal={arXiv preprint arXiv:2212.03533},
year={2022}
}