Whisper Turbo ig

This model is a fine-tuned version of deepdml/whisper-large-v3-turbo on the google/fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7028
  • Wer: 31.2646
  • Cer: 10.8084

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.04
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.2019 0.2 1000 0.6438 36.4596 12.5223
0.1293 0.4 2000 0.6558 33.7633 11.6044
0.0589 0.6 3000 0.6882 31.8758 10.6653
0.0504 0.8 4000 0.6845 31.0669 10.3172
0.0353 1.0 5000 0.7028 31.2646 10.8084

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1

Citation

Please cite the model using the following BibTeX entry:

@misc{deepdml/whisper-large-v3-turbo-ig-mix-norm,
      title={Fine-tuned Whisper turbo ASR model for speech recognition in Lingala},
      author={Jimenez, David},
      howpublished={\url{https://huggingface.co/deepdml/whisper-large-v3-turbo-ig-mix-norm}},
      year={2025}
    }
Downloads last month
111
Safetensors
Model size
0.8B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for deepdml/whisper-large-v3-turbo-ig-mix-norm

Finetuned
(6)
this model

Datasets used to train deepdml/whisper-large-v3-turbo-ig-mix-norm

Evaluation results