deepdml's picture
Upload README.md with huggingface_hub
1e7c1ca verified
metadata
language:
  - ar
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - UBC-NLP/Casablanca
  - google/fleurs
  - ymoslem/MediaSpeech
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Base ar
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: UBC-NLP/Casablanca
          config: ar
          split: test
          args: ar
        metrics:
          - name: Wer
            type: wer
            value: 60.7676585850631

Whisper Base ar

This model is a fine-tuned version of openai/whisper-base on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6739
  • Wer: 60.7677

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.6127 0.2 1000 2.1392 51.3435
0.3365 0.4 2000 2.4225 48.5384
0.2029 0.6 3000 2.5954 50.8035
0.1403 0.8 4000 2.7056 53.3236
0.1053 1.0 5000 2.6739 60.7677

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1

Citation

@misc{deepdml/whisper-base-ar-mix-norm,
      title={Fine-tuned Whisper base ASR model for speech recognition in Arabic},
      author={Jimenez, David},
      howpublished={\url{https://huggingface.co/deepdml/whisper-base-ar-mix-norm}},
      year={2025}
    }