Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
latency: struct<avg_latency_sec: double, p95_latency_sec: double, p99_latency_sec: double, total_queries: int64>
hard_failures: list<item: struct<task_id: string, turn: int64, collection: string, ndcg_at_10: double, recall_at_10: double, ndcg_at_5: double, recall_at_5: double, recall_at_20: double, recall_at_100: double, precision_at_5: double, precision_at_10: double>>
performance_by_turn: struct<mean: struct<1: double, 2: double, 3: double, 4: double, 5: double, 6: double, 7: double, 8: double, 9: double>, std: struct<1: double, 2: double, 3: double, 4: double, 5: double, 6: double, 7: double, 8: double, 9: double>, count: struct<1: int64, 2: int64, 3: int64, 4: int64, 5: int64, 6: int64, 7: int64, 8: int64, 9: int64>>
bootstrap_ci_ndcg_at_5: struct<mean: double, ci_lower: double, ci_upper: double, std_dev: double, confidence_level: double>
variance_by_turn: struct<mean: struct<1: double, 2: double, 3: double, 4: double, 5: double, 6: double, 7: double, 8: double, 9: double>, std: struct<1: double, 2: double, 3: double, 4: double, 5: double, 6: double, 7: double, 8: double, 9: double>, min: struct<1: double, 2: double, 3: double, 4: double, 5: double, 6: double, 7: double, 8: double, 9: double>, max: struct<1: double, 2: double, 3: double, 4: double, 5: double, 6: double, 7: double, 8: double, 9: double>>
vs
nDCG: list<item: double>
Recall: list<item: double>
MAP: list<item: double>
Precision: list<item: double>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 547, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              latency: struct<avg_latency_sec: double, p95_latency_sec: double, p99_latency_sec: double, total_queries: int64>
              hard_failures: list<item: struct<task_id: string, turn: int64, collection: string, ndcg_at_10: double, recall_at_10: double, ndcg_at_5: double, recall_at_5: double, recall_at_20: double, recall_at_100: double, precision_at_5: double, precision_at_10: double>>
              performance_by_turn: struct<mean: struct<1: double, 2: double, 3: double, 4: double, 5: double, 6: double, 7: double, 8: double, 9: double>, std: struct<1: double, 2: double, 3: double, 4: double, 5: double, 6: double, 7: double, 8: double, 9: double>, count: struct<1: int64, 2: int64, 3: int64, 4: int64, 5: int64, 6: int64, 7: int64, 8: int64, 9: int64>>
              bootstrap_ci_ndcg_at_5: struct<mean: double, ci_lower: double, ci_upper: double, std_dev: double, confidence_level: double>
              variance_by_turn: struct<mean: struct<1: double, 2: double, 3: double, 4: double, 5: double, 6: double, 7: double, 8: double, 9: double>, std: struct<1: double, 2: double, 3: double, 4: double, 5: double, 6: double, 7: double, 8: double, 9: double>, min: struct<1: double, 2: double, 3: double, 4: double, 5: double, 6: double, 7: double, 8: double, 9: double>, max: struct<1: double, 2: double, 3: double, 4: double, 5: double, 6: double, 7: double, 8: double, 9: double>>
              vs
              nDCG: list<item: double>
              Recall: list<item: double>
              MAP: list<item: double>
              Precision: list<item: double>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

MT-RAG Benchmark - Retrieval Results

This dataset contains experimental results from the Multi-Turn RAG (MT-RAG) benchmark focusing on retrieval tasks across multiple domains.

Dataset Description

Competition: MT-RAG Benchmark - Task A (Retrieval)
Date: January 2026
Domains: CLAPNQ, CLOUD, FIQA, GOVT

Contents

1. Baseline Results with Ground Truth Rewrites

Directory: submissions/baselines_rewrite/

Results for 5 retrieval models using query rewrites provided in the original dataset:

  • BM25: Traditional sparse retrieval
  • SPLADE: Learned sparse retrieval (best sparse model)
  • BGE-1.5: Dense retrieval (BAAI/bge-large-en-v1.5)
  • BGE-M3: Multi-modal dense retrieval
  • Voyage-3: Commercial dense retrieval API

20 experiments total (5 models Γ— 4 domains)

2. Hybrid Retrieval Results

Directory: submissions/hybrid/

Results combining sparse and dense methods using Reciprocal Rank Fusion (RRF):

  • SPLADE + Voyage-3: For CLAPNQ and GOVT (strongest domains)
  • SPLADE + BGE-1.5: For CLOUD and FIQA (cost-effective)

Both with and without query rewrites.

8 experiments total (4 configurations Γ— 2 rewrite variants)

File Structure

submissions/
β”œβ”€β”€ baselines_rewrite/
β”‚   β”œβ”€β”€ A2_baseline_bm25_rewrite/
β”‚   β”‚   β”œβ”€β”€ clapnq/
β”‚   β”‚   β”‚   β”œβ”€β”€ metrics.json
β”‚   β”‚   β”‚   └── retrieval_results.jsonl
β”‚   β”‚   β”œβ”€β”€ cloud/
β”‚   β”‚   β”œβ”€β”€ fiqa/
β”‚   β”‚   └── govt/
β”‚   β”œβ”€β”€ A2_baseline_splade_rewrite/
β”‚   β”œβ”€β”€ A2_baseline_bge15_rewrite/
β”‚   β”œβ”€β”€ A2_baseline_bgem3_rewrite/
β”‚   └── A2_baseline_voyage_rewrite/
β”‚
β”œβ”€β”€ hybrid/
β”‚   β”œβ”€β”€ hybrid_splade_voyage_norewrite/
β”‚   β”œβ”€β”€ hybrid_splade_voyage_rewrite/
β”‚   β”œβ”€β”€ hybrid_splade_bge15_norewrite/
β”‚   └── hybrid_splade_bge15_rewrite/
β”‚
└── RESULTS_SUMMARY.md

Metrics

Each experiment includes metrics.json with:

  • nDCG @ 5, 10, 20, 100
  • Recall @ 5, 10, 20, 100
  • MAP @ 5, 10, 20, 100
  • Precision @ 5, 10, 20, 100

Best Results (nDCG@10)

Domain Configuration Score
CLAPNQ SPLADE + Voyage-3 (Rewrite) 0.56266
GOVT SPLADE + Voyage-3 (Rewrite) 0.53445
CLOUD SPLADE + BGE-1.5 (Rewrite) 0.44028
FIQA SPLADE + BGE-1.5 (Rewrite) 0.40589

Average: 0.48582

Key Findings

  1. Ground truth rewrites are effective: +9% to +26% improvement over last-turn queries
  2. SPLADE is the best sparse retriever: Consistent performance across all domains (avg 0.457)
  3. Hybrid methods outperform individual retrievers: +3% to +10% improvement
  4. Domain-specific optimization matters: Voyage-3 for strong domains, BGE-1.5 for weaker/cost-sensitive
  5. BGE-M3 underperforms with rewrites: Should be avoided in rewrite scenarios

Retrieval Results Format

Each retrieval_results.jsonl contains one JSON object per query:

{
  "task_id": "clapnq_123",
  "question": "How do I configure SSL?",
  "contexts": [
    {
      "document_id": "doc123_chunk5",
      "score": 0.85,
      "text": "To configure SSL..."
    },
    ...
  ],
  "Collection": "clapnq",
  "turn_id": 3
}

Citation

If you use this dataset, please cite:

@dataset{mt_rag_retrieval_results_2026,
  title={MT-RAG Benchmark Retrieval Results},
  author={Your Name},
  year={2026},
  publisher={Hugging Face},
  url={https://huggingface.co/datasets/vania-janet/multiturn-rag-retrieval-data}
}

License

Apache 2.0

Additional Information

For methodology details, see RESULTS_SUMMARY.md in the dataset.

Downloads last month
23