Dataset Preview
	The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
				Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 1 new columns ({'all_premises'})
This happened while the json dataset builder was generating data using
hf://datasets/ruc-ai4math/mathlib_handler_benchmark_410/random/random_our/train_expand_premise.jsonl (at revision d7eebe1a607c49926b283b5cc129ed8314915c16)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              state: struct<context: list<item: string>, goal: string>
                child 0, context: list<item: string>
                    child 0, item: string
                child 1, goal: string
              premise: int64
              module: list<item: string>
                child 0, item: string
              all_premises: list<item: int64>
                child 0, item: int64
              to
              {'state': {'context': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'goal': Value(dtype='string', id=None)}, 'premise': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'module': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1438, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'all_premises'})
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/ruc-ai4math/mathlib_handler_benchmark_410/random/random_our/train_expand_premise.jsonl (at revision d7eebe1a607c49926b283b5cc129ed8314915c16)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
| state
				 dict | premise
				 sequence | module
				 sequence | 
|---|---|---|
| 
	{
  "context": [
    "α : Type u_1",
    "inst✝ : LinearOrder α",
    "s t : Set α",
    "x✝ y z x : α"
  ],
  "goal": "toDual x ∈ (⇑ofDual ⁻¹' s).ordConnectedComponent (toDual x✝) ↔ toDual x ∈ ⇑ofDual ⁻¹' s.ordConnectedComponent x✝"
} | 
	[
  17175,
  18528,
  1713
] | 
	[
  "Mathlib/Order/Interval/Set/OrdConnectedComponent.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "inst✝ : LinearOrder α",
    "s t : Set α",
    "x✝ y z x : α"
  ],
  "goal": "⇑ofDual ⁻¹' [[x✝, x]] ⊆ ⇑ofDual ⁻¹' s ↔ toDual x ∈ ⇑ofDual ⁻¹' s.ordConnectedComponent x✝"
} | 
	[
  18528,
  1713,
  17175
] | 
	[
  "Mathlib/Order/Interval/Set/OrdConnectedComponent.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "G G' : SimpleGraph α",
    "inst✝² : DecidableRel G.Adj",
    "ε : ℝ",
    "s t u : Finset α",
    "inst✝¹ : DecidableEq α",
    "inst✝ : Fintype α",
    "P : Finpartition univ",
    "dst : 2 * ε ≤ ↑(G.edgeDensity s t)",
    "ust : G.IsUniform ε s t",
    "hst : Disjoint s t",
    "dsu : 2 * ε ≤ ↑(G.edgeDensity s u)",
    "usu : G.IsUniform ε s u",
    "hsu : Disjoint s u",
    "dtu : 2 * ε ≤ ↑(G.edgeDensity t u)",
    "utu : G.IsUniform ε t u",
    "htu : Disjoint t u"
  ],
  "goal": "(1 - 2 * ε) * ε ^ 3 * ↑s.card * ↑t.card * ↑u.card ≤ ↑(G.cliqueFinset 3).card"
} | 
	[
  52912,
  142597
] | 
	[
  "Mathlib/Combinatorics/SimpleGraph/Triangle/Counting.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "G G' : SimpleGraph α",
    "inst✝² : DecidableRel G.Adj",
    "ε : ℝ",
    "s t u : Finset α",
    "inst✝¹ : DecidableEq α",
    "inst✝ : Fintype α",
    "P : Finpartition univ",
    "dst : 2 * ε ≤ ↑(G.edgeDensity s t)",
    "ust : G.IsUniform ε s t",
    "hst : Disjoint s t",
    "dsu : 2 * ε ≤ ↑(G.edgeDensity s u)",
    "usu : G.IsUniform ε s u",
    "hsu : Disjoint s u",
    "dtu : 2 * ε ≤ ↑(G.edgeDensity t u)",
    "utu : G.IsUniform ε t u",
    "htu : Disjoint t u"
  ],
  "goal": "↑(filter (fun x => match x with | (a, b, c) => G.Adj a b ∧ G.Adj a c ∧ G.Adj b c) (s ×ˢ t ×ˢ u)).card ≤ ↑(G.cliqueFinset 3).card"
} | 
	[
  52912,
  142597
] | 
	[
  "Mathlib/Combinatorics/SimpleGraph/Triangle/Counting.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "G G' : SimpleGraph α",
    "inst✝² : DecidableRel G.Adj",
    "ε : ℝ",
    "s t u : Finset α",
    "inst✝¹ : DecidableEq α",
    "inst✝ : Fintype α",
    "P : Finpartition univ",
    "dst : 2 * ε ≤ ↑(G.edgeDensity s t)",
    "ust : G.IsUniform ε s t",
    "hst : Disjoint s t",
    "dsu : 2 * ε ≤ ↑(G.edgeDensity s u)",
    "usu : G.IsUniform ε s u",
    "hsu : Disjoint s u",
    "dtu : 2 * ε ≤ ↑(G.edgeDensity t u)",
    "utu : G.IsUniform ε t u",
    "htu : Disjoint t u"
  ],
  "goal": "(filter (fun x => match x with | (a, b, c) => G.Adj a b ∧ G.Adj a c ∧ G.Adj b c) (s ×ˢ t ×ˢ u)).card ≤ (G.cliqueFinset 3).card"
} | 
	[
  137677,
  142597
] | 
	[
  "Mathlib/Combinatorics/SimpleGraph/Triangle/Counting.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "G G' : SimpleGraph α",
    "inst✝² : DecidableRel G.Adj",
    "ε : ℝ",
    "s t u : Finset α",
    "inst✝¹ : DecidableEq α",
    "inst✝ : Fintype α",
    "P : Finpartition univ",
    "dst : 2 * ε ≤ ↑(G.edgeDensity s t)",
    "ust : G.IsUniform ε s t",
    "hst : Disjoint s t",
    "dsu : 2 * ε ≤ ↑(G.edgeDensity s u)",
    "usu : G.IsUniform ε s u",
    "hsu : Disjoint s u",
    "dtu : 2 * ε ≤ ↑(G.edgeDensity t u)",
    "utu : G.IsUniform ε t u",
    "htu : Disjoint t u"
  ],
  "goal": "∀ a ∈ filter (fun x => match x with | (a, b, c) => G.Adj a b ∧ G.Adj a c ∧ G.Adj b c) (s ×ˢ t ×ˢ u), (fun x => match x with | (x, y, z) => {x, y, z}) a ∈ G.cliqueFinset 3"
} | 
	[
  137677
] | 
	[
  "Mathlib/Combinatorics/SimpleGraph/Triangle/Counting.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "G G' : SimpleGraph α",
    "inst✝² : DecidableRel G.Adj",
    "ε : ℝ",
    "s t u : Finset α",
    "inst✝¹ : DecidableEq α",
    "inst✝ : Fintype α",
    "P : Finpartition univ",
    "dst : 2 * ε ≤ ↑(G.edgeDensity s t)",
    "ust : G.IsUniform ε s t",
    "hst : Disjoint s t",
    "dsu : 2 * ε ≤ ↑(G.edgeDensity s u)",
    "usu : G.IsUniform ε s u",
    "hsu : Disjoint s u",
    "dtu : 2 * ε ≤ ↑(G.edgeDensity t u)",
    "utu : G.IsUniform ε t u",
    "htu : Disjoint t u"
  ],
  "goal": "Set.InjOn (fun x => match x with | (x, y, z) => {x, y, z}) ↑(filter (fun x => match x with | (a, b, c) => G.Adj a b ∧ G.Adj a c ∧ G.Adj b c) (s ×ˢ t ×ˢ u))"
} | 
	[
  137677
] | 
	[
  "Mathlib/Combinatorics/SimpleGraph/Triangle/Counting.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "G G' : SimpleGraph α",
    "inst✝² : DecidableRel G.Adj",
    "ε : ℝ",
    "s t✝ u : Finset α",
    "inst✝¹ : DecidableEq α",
    "inst✝ : Fintype α",
    "P : Finpartition univ",
    "dst : 2 * ε ≤ ↑(G.edgeDensity s t✝)",
    "ust : G.IsUniform ε s t✝",
    "hst : Disjoint s t✝",
    "dsu : 2 * ε ≤ ↑(G.edgeDensity s u)",
    "usu : G.IsUniform ε s u",
    "hsu : Disjoint s u",
    "dtu : 2 * ε ≤ ↑(G.edgeDensity t✝ u)",
    "utu : G.IsUniform ε t✝ u",
    "htu : Disjoint t✝ u",
    "x₁ y₁ z₁ : α",
    "h₁ : (x₁, y₁, z₁) ∈ ↑(filter (fun x => match x with | (a, b, c) => G.Adj a b ∧ G.Adj a c ∧ G.Adj b c) (s ×ˢ t✝ ×ˢ u))",
    "x₂ y₂ z₂ : α",
    "h₂ : (x₂, y₂, z₂) ∈ ↑(filter (fun x => match x with | (a, b, c) => G.Adj a b ∧ G.Adj a c ∧ G.Adj b c) (s ×ˢ t✝ ×ˢ u))",
    "t : (fun x => match x with | (x, y, z) => {x, y, z}) (x₁, y₁, z₁) = (fun x => match x with | (x, y, z) => {x, y, z}) (x₂, y₂, z₂)"
  ],
  "goal": "(x₁, y₁, z₁) = (x₂, y₂, z₂)"
} | 
	[
  136829,
  138668,
  139089,
  1101,
  1674,
  52913
] | 
	[
  "Mathlib/Combinatorics/SimpleGraph/Triangle/Counting.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "G G' : SimpleGraph α",
    "inst✝² : DecidableRel G.Adj",
    "ε : ℝ",
    "s t✝ u : Finset α",
    "inst✝¹ : DecidableEq α",
    "inst✝ : Fintype α",
    "P : Finpartition univ",
    "dst : 2 * ε ≤ ↑(G.edgeDensity s t✝)",
    "ust : G.IsUniform ε s t✝",
    "hst : Disjoint s t✝",
    "dsu : 2 * ε ≤ ↑(G.edgeDensity s u)",
    "usu : G.IsUniform ε s u",
    "hsu : Disjoint s u",
    "dtu : 2 * ε ≤ ↑(G.edgeDensity t✝ u)",
    "utu : G.IsUniform ε t✝ u",
    "htu : Disjoint t✝ u",
    "x₁ y₁ z₁ x₂ y₂ z₂ : α",
    "t : (fun x => match x with | (x, y, z) => {x, y, z}) (x₁, y₁, z₁) = (fun x => match x with | (x, y, z) => {x, y, z}) (x₂, y₂, z₂)",
    "h₁ : (x₁ ∈ s ∧ y₁ ∈ t✝ ∧ z₁ ∈ u) ∧ G.Adj x₁ y₁ ∧ G.Adj x₁ z₁ ∧ G.Adj y₁ z₁",
    "h₂ : (x₂ ∈ s ∧ y₂ ∈ t✝ ∧ z₂ ∈ u) ∧ G.Adj x₂ y₂ ∧ G.Adj x₂ z₂ ∧ G.Adj y₂ z₂"
  ],
  "goal": "(x₁, y₁, z₁) = (x₂, y₂, z₂)"
} | 
	[
  1674,
  138668,
  1101,
  139089,
  52913,
  136829
] | 
	[
  "Mathlib/Combinatorics/SimpleGraph/Triangle/Counting.lean"
] | 
| 
	{
  "context": [
    "R : Type u_1",
    "A : Type u_2",
    "p : A → Prop",
    "inst✝¹⁸ : OrderedCommRing R",
    "inst✝¹⁷ : Nontrivial R",
    "inst✝¹⁶ : StarRing R",
    "inst✝¹⁵ : StarOrderedRing R",
    "inst✝¹⁴ : MetricSpace R",
    "inst✝¹³ : TopologicalRing R",
    "inst✝¹² : ContinuousStar R",
    "inst✝¹¹ : ∀ (α : Type ?u.1282777) [inst : Zero α] [inst_1 : TopologicalSpace α], StarOrderedRing C(α, R)₀",
    "inst✝¹⁰ : TopologicalSpace A",
    "inst✝⁹ : NonUnitalRing A",
    "inst✝⁸ : StarRing A",
    "inst✝⁷ : PartialOrder A",
    "inst✝⁶ : StarOrderedRing A",
    "inst✝⁵ : Module R A",
    "inst✝⁴ : IsScalarTower R A A",
    "inst✝³ : SMulCommClass R A A",
    "inst✝² : StarModule R A",
    "inst✝¹ : NonUnitalContinuousFunctionalCalculus R p",
    "inst✝ : NonnegSpectrumClass R A",
    "f g : R → R",
    "a : A",
    "hf : autoParam (ContinuousOn f (σₙ R a)) _auto✝",
    "hg : autoParam (ContinuousOn g (σₙ R a)) _auto✝",
    "hf0 : autoParam (f 0 = 0) _auto✝",
    "hg0 : autoParam (g 0 = 0) _auto✝",
    "ha : autoParam (p a) _auto✝"
  ],
  "goal": "cfcₙ f a ≤ cfcₙ g a ↔ ∀ x ∈ σₙ R a, f x ≤ g x"
} | 
	[
  38025,
  38072,
  62597
] | 
	[
  "Mathlib/Analysis/CstarAlgebra/ContinuousFunctionalCalculus/NonUnital.lean"
] | 
| 
	{
  "context": [
    "R : Type u_1",
    "A : Type u_2",
    "p : A → Prop",
    "inst✝¹⁸ : OrderedCommRing R",
    "inst✝¹⁷ : Nontrivial R",
    "inst✝¹⁶ : StarRing R",
    "inst✝¹⁵ : StarOrderedRing R",
    "inst✝¹⁴ : MetricSpace R",
    "inst✝¹³ : TopologicalRing R",
    "inst✝¹² : ContinuousStar R",
    "inst✝¹¹ : ∀ (α : Type u_1) [inst : Zero α] [inst_1 : TopologicalSpace α], StarOrderedRing C(α, R)₀",
    "inst✝¹⁰ : TopologicalSpace A",
    "inst✝⁹ : NonUnitalRing A",
    "inst✝⁸ : StarRing A",
    "inst✝⁷ : PartialOrder A",
    "inst✝⁶ : StarOrderedRing A",
    "inst✝⁵ : Module R A",
    "inst✝⁴ : IsScalarTower R A A",
    "inst✝³ : SMulCommClass R A A",
    "inst✝² : StarModule R A",
    "inst✝¹ : NonUnitalContinuousFunctionalCalculus R p",
    "inst✝ : NonnegSpectrumClass R A",
    "f g : R → R",
    "a : A",
    "hf : autoParam (ContinuousOn f (σₙ R a)) _auto✝",
    "hg : autoParam (ContinuousOn g (σₙ R a)) _auto✝",
    "hf0 : autoParam (f 0 = 0) _auto✝",
    "hg0 : autoParam (g 0 = 0) _auto✝",
    "ha : autoParam (p a) _auto✝"
  ],
  "goal": "(∀ (x : ↑(σₙ R a)), { toFun := (σₙ R a).restrict f, continuous_toFun := ⋯, map_zero' := ⋯ } x ≤ { toFun := (σₙ R a).restrict g, continuous_toFun := ⋯, map_zero' := ⋯ } x) ↔ ∀ x ∈ σₙ R a, f x ≤ g x"
} | 
	[
  38025,
  38072,
  62597
] | 
	[
  "Mathlib/Analysis/CstarAlgebra/ContinuousFunctionalCalculus/NonUnital.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "β : Type u_2",
    "γ : Type u_3",
    "ι : Type u_4",
    "ι' : Type u_5",
    "κ : Sort u_6",
    "r p q : α → α → Prop",
    "s t : Set ι",
    "f : ι → Set α",
    "h : (s ∪ t).PairwiseDisjoint f"
  ],
  "goal": "(⋃ i ∈ s, f i) \\ ⋃ i ∈ t, f i = ⋃ i ∈ s \\ t, f i"
} | 
	[
  1674,
  2107,
  131589,
  135248,
  135354,
  135582,
  135215
] | 
	[
  "Mathlib/Data/Set/Pairwise/Lattice.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "β : Type u_2",
    "γ : Type u_3",
    "ι : Type u_4",
    "ι' : Type u_5",
    "κ : Sort u_6",
    "r p q : α → α → Prop",
    "s t : Set ι",
    "f : ι → Set α",
    "h : (s ∪ t).PairwiseDisjoint f",
    "i : ι",
    "hi : i ∈ s \\ t",
    "a : α",
    "ha : a ∈ f i"
  ],
  "goal": "a ∉ ⋃ x ∈ t, f x"
} | 
	[
  131589,
  1674,
  135215,
  135248,
  135354,
  2107,
  135582
] | 
	[
  "Mathlib/Data/Set/Pairwise/Lattice.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "β : Type u_2",
    "γ : Type u_3",
    "ι : Type u_4",
    "ι' : Type u_5",
    "κ : Sort u_6",
    "r p q : α → α → Prop",
    "s t : Set ι",
    "f : ι → Set α",
    "h : (s ∪ t).PairwiseDisjoint f",
    "i : ι",
    "hi : i ∈ s \\ t",
    "a : α",
    "ha : a ∈ f i"
  ],
  "goal": "¬∃ i, ∃ (_ : i ∈ t), a ∈ f i"
} | 
	[
  135215
] | 
	[
  "Mathlib/Data/Set/Pairwise/Lattice.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "β : Type u_2",
    "γ : Type u_3",
    "ι : Type u_4",
    "ι' : Type u_5",
    "κ : Sort u_6",
    "r p q : α → α → Prop",
    "s t : Set ι",
    "f : ι → Set α",
    "h : (s ∪ t).PairwiseDisjoint f",
    "i : ι",
    "hi : i ∈ s \\ t",
    "a : α",
    "ha : a ∈ f i",
    "j : ι",
    "hj : j ∈ t",
    "haj : a ∈ f j"
  ],
  "goal": "False"
} | 
	[
  35,
  1690,
  2106,
  2107,
  13484
] | 
	[
  "Mathlib/Data/Set/Pairwise/Lattice.lean"
] | 
| 
	{
  "context": [
    "ι : Type u_1",
    "α : Type u_2",
    "β : Type u_3",
    "inst✝² : Preorder α",
    "inst✝¹ : LocallyFiniteOrder α",
    "inst✝ : Preorder β",
    "f : α → β"
  ],
  "goal": "StrictMono f ↔ ∀ (a b : α), a ⋖ b → f a < f b"
} | 
	[
  16610,
  70476
] | 
	[
  "Mathlib/Order/Interval/Finset/Basic.lean"
] | 
| 
	{
  "context": [
    "ι : Type u_1",
    "α : Type u_2",
    "β : Type u_3",
    "inst✝² : Preorder α",
    "inst✝¹ : LocallyFiniteOrder α",
    "inst✝ : Preorder β",
    "f : α → β",
    "h : ∀ (a b : α), a ⋖ b → f a < f b",
    "a b : α",
    "hab : a < b"
  ],
  "goal": "f a < f b"
} | 
	[
  16610,
  70476
] | 
	[
  "Mathlib/Order/Interval/Finset/Basic.lean"
] | 
| 
	{
  "context": [
    "ι : Type u_1",
    "α : Type u_2",
    "β : Type u_3",
    "inst✝² : Preorder α",
    "inst✝¹ : LocallyFiniteOrder α",
    "inst✝ : Preorder β",
    "f : α → β",
    "h : ∀ (a b : α), a ⋖ b → f a < f b",
    "a b : α",
    "hab : a < b",
    "this : TransGen CovBy a b → TransGen LT.lt (f a) (f b)"
  ],
  "goal": "f a < f b"
} | 
	[
  70473,
  14281,
  20706,
  70476
] | 
	[
  "Mathlib/Order/Interval/Finset/Basic.lean"
] | 
| 
	{
  "context": [
    "ι : Type u_1",
    "α : Type u_2",
    "β : Type u_3",
    "inst✝² : Preorder α",
    "inst✝¹ : LocallyFiniteOrder α",
    "inst✝ : Preorder β",
    "f : α → β",
    "h : ∀ (a b : α), a ⋖ b → f a < f b",
    "a b : α",
    "hab : a < b",
    "this : a < b → f a < f b"
  ],
  "goal": "f a < f b"
} | 
	[
  14281,
  20706,
  70473
] | 
	[
  "Mathlib/Order/Interval/Finset/Basic.lean"
] | 
| 
	{
  "context": [
    "𝕜 : Type u_1",
    "inst✝⁴ : NontriviallyNormedField 𝕜",
    "F : Type u_2",
    "inst✝³ : NormedAddCommGroup F",
    "inst✝² : NormedSpace 𝕜 F",
    "E : Type u_3",
    "inst✝¹ : NormedAddCommGroup E",
    "inst✝ : NormedSpace 𝕜 E",
    "f✝ f₀ f₁ : E → F",
    "f' : F",
    "s t : Set E",
    "x v : E",
    "L : E →L[𝕜] F",
    "f : E → F",
    "x₀ : E",
    "C : ℝ",
    "hC₀ : 0 ≤ C",
    "hlip : ∀ᶠ (x : E) in 𝓝 x₀, ‖f x - f x₀‖ ≤ C * ‖x - x₀‖"
  ],
  "goal": "‖lineDeriv 𝕜 f x₀ v‖ ≤ C * ‖v‖"
} | 
	[
  44446
] | 
	[
  "Mathlib/Analysis/Calculus/LineDeriv/Basic.lean"
] | 
| 
	{
  "context": [
    "𝕜 : Type u_1",
    "inst✝⁴ : NontriviallyNormedField 𝕜",
    "F : Type u_2",
    "inst✝³ : NormedAddCommGroup F",
    "inst✝² : NormedSpace 𝕜 F",
    "E : Type u_3",
    "inst✝¹ : NormedAddCommGroup E",
    "inst✝ : NormedSpace 𝕜 E",
    "f✝ f₀ f₁ : E → F",
    "f' : F",
    "s t : Set E",
    "x v : E",
    "L : E →L[𝕜] F",
    "f : E → F",
    "x₀ : E",
    "C : ℝ",
    "hC₀ : 0 ≤ C",
    "hlip : ∀ᶠ (x : E) in 𝓝 x₀, ‖f x - f x₀‖ ≤ C * ‖x - x₀‖"
  ],
  "goal": "∀ᶠ (x : 𝕜) in 𝓝 0, ‖f (x₀ + x • v) - f (x₀ + 0 • v)‖ ≤ C * ‖v‖ * ‖x - 0‖"
} | 
	[
  44446
] | 
	[
  "Mathlib/Analysis/Calculus/LineDeriv/Basic.lean"
] | 
| 
	{
  "context": [
    "𝕜 : Type u_1",
    "inst✝⁴ : NontriviallyNormedField 𝕜",
    "F : Type u_2",
    "inst✝³ : NormedAddCommGroup F",
    "inst✝² : NormedSpace 𝕜 F",
    "E : Type u_3",
    "inst✝¹ : NormedAddCommGroup E",
    "inst✝ : NormedSpace 𝕜 E",
    "f✝ f₀ f₁ : E → F",
    "f' : F",
    "s t : Set E",
    "x v : E",
    "L : E →L[𝕜] F",
    "f : E → F",
    "x₀ : E",
    "C : ℝ",
    "hC₀ : 0 ≤ C",
    "hlip : ∀ᶠ (x : E) in 𝓝 x₀, ‖f x - f x₀‖ ≤ C * ‖x - x₀‖",
    "A : Continuous fun t => x₀ + t • v",
    "this : ∀ᶠ (x : E) in 𝓝 (x₀ + 0 • v), ‖f x - f x₀‖ ≤ C * ‖x - x₀‖"
  ],
  "goal": "∀ᶠ (x : 𝕜) in 𝓝 0, ‖f (x₀ + x • v) - f (x₀ + 0 • v)‖ ≤ C * ‖v‖ * ‖x - 0‖"
} | 
	[
  15889,
  55623,
  55638,
  131585,
  41371,
  118076,
  119707,
  131585,
  134071
] | 
	[
  "Mathlib/Analysis/Calculus/LineDeriv/Basic.lean"
] | 
| 
	{
  "context": [
    "𝕜 : Type u_1",
    "inst✝⁴ : NontriviallyNormedField 𝕜",
    "F : Type u_2",
    "inst✝³ : NormedAddCommGroup F",
    "inst✝² : NormedSpace 𝕜 F",
    "E : Type u_3",
    "inst✝¹ : NormedAddCommGroup E",
    "inst✝ : NormedSpace 𝕜 E",
    "f✝ f₀ f₁ : E → F",
    "f' : F",
    "s t✝ : Set E",
    "x v : E",
    "L : E →L[𝕜] F",
    "f : E → F",
    "x₀ : E",
    "C : ℝ",
    "hC₀ : 0 ≤ C",
    "hlip : ∀ᶠ (x : E) in 𝓝 x₀, ‖f x - f x₀‖ ≤ C * ‖x - x₀‖",
    "A : Continuous fun t => x₀ + t • v",
    "this : ∀ᶠ (x : E) in 𝓝 (x₀ + 0 • v), ‖f x - f x₀‖ ≤ C * ‖x - x₀‖",
    "t : 𝕜",
    "ht : t ∈ (fun t => x₀ + t • v) ⁻¹' {x | ‖f x - f x₀‖ ≤ C * ‖x - x₀‖}"
  ],
  "goal": "‖f (x₀ + t • v) - f (x₀ + 0 • v)‖ ≤ C * ‖v‖ * ‖t - 0‖"
} | 
	[
  131585,
  119707,
  55623,
  15889,
  55638,
  134071,
  41371,
  118076
] | 
	[
  "Mathlib/Analysis/Calculus/LineDeriv/Basic.lean"
] | 
| 
	{
  "context": [
    "𝕜 : Type u_1",
    "inst✝⁴ : NontriviallyNormedField 𝕜",
    "F : Type u_2",
    "inst✝³ : NormedAddCommGroup F",
    "inst✝² : NormedSpace 𝕜 F",
    "E : Type u_3",
    "inst✝¹ : NormedAddCommGroup E",
    "inst✝ : NormedSpace 𝕜 E",
    "f✝ f₀ f₁ : E → F",
    "f' : F",
    "s t✝ : Set E",
    "x v : E",
    "L : E →L[𝕜] F",
    "f : E → F",
    "x₀ : E",
    "C : ℝ",
    "hC₀ : 0 ≤ C",
    "hlip : ∀ᶠ (x : E) in 𝓝 x₀, ‖f x - f x₀‖ ≤ C * ‖x - x₀‖",
    "A : Continuous fun t => x₀ + t • v",
    "this : ∀ᶠ (x : E) in 𝓝 (x₀ + 0 • v), ‖f x - f x₀‖ ≤ C * ‖x - x₀‖",
    "t : 𝕜",
    "ht : ‖f (x₀ + t • v) - f x₀‖ ≤ C * (‖v‖ * ‖t‖)"
  ],
  "goal": "‖f (x₀ + t • v) - f (x₀ + 0 • v)‖ ≤ C * ‖v‖ * ‖t - 0‖"
} | 
	[
  131585,
  119703,
  41371,
  134071,
  119707,
  118076
] | 
	[
  "Mathlib/Analysis/Calculus/LineDeriv/Basic.lean"
] | 
| 
	{
  "context": [
    "E : Type u_1",
    "inst✝³ : NormedAddCommGroup E",
    "inst✝² : NormedSpace ℝ E",
    "F : Type u_2",
    "inst✝¹ : NormedAddCommGroup F",
    "inst✝ : NormedSpace ℝ F",
    "v : ℝ → E → E",
    "s : ℝ → Set E",
    "K : ℝ≥0",
    "f g f' g' : ℝ → E",
    "a b t₀ εf εg δ : ℝ",
    "hv : ∀ (t : ℝ), LipschitzOnWith K (v t) (s t)",
    "ht : t₀ ∈ Ioo a b",
    "hf : ∀ t ∈ Ioo a b, HasDerivAt f (v t (f t)) t ∧ f t ∈ s t",
    "hg : ∀ t ∈ Ioo a b, HasDerivAt g (v t (g t)) t ∧ g t ∈ s t",
    "heq : f t₀ = g t₀",
    "t' : ℝ",
    "ht' : t' ∈ Ioo a b"
  ],
  "goal": "f t' = g t'"
} | 
	[
  14316
] | 
	[
  "Mathlib/Analysis/ODE/Gronwall.lean"
] | 
| 
	{
  "context": [
    "E : Type u_1",
    "inst✝³ : NormedAddCommGroup E",
    "inst✝² : NormedSpace ℝ E",
    "F : Type u_2",
    "inst✝¹ : NormedAddCommGroup F",
    "inst✝ : NormedSpace ℝ F",
    "v : ℝ → E → E",
    "s : ℝ → Set E",
    "K : ℝ≥0",
    "f g f' g' : ℝ → E",
    "a b t₀ εf εg δ : ℝ",
    "hv : ∀ (t : ℝ), LipschitzOnWith K (v t) (s t)",
    "ht : t₀ ∈ Ioo a b",
    "hf : ∀ t ∈ Ioo a b, HasDerivAt f (v t (f t)) t ∧ f t ∈ s t",
    "hg : ∀ t ∈ Ioo a b, HasDerivAt g (v t (g t)) t ∧ g t ∈ s t",
    "heq : f t₀ = g t₀",
    "t' : ℝ",
    "ht' : t' ∈ Ioo a b",
    "h : t' < t₀"
  ],
  "goal": "f t' = g t'"
} | 
	[
  14316
] | 
	[
  "Mathlib/Analysis/ODE/Gronwall.lean"
] | 
| 
	{
  "context": [
    "E : Type u_1",
    "inst✝³ : NormedAddCommGroup E",
    "inst✝² : NormedSpace ℝ E",
    "F : Type u_2",
    "inst✝¹ : NormedAddCommGroup F",
    "inst✝ : NormedSpace ℝ F",
    "v : ℝ → E → E",
    "s : ℝ → Set E",
    "K : ℝ≥0",
    "f g f' g' : ℝ → E",
    "a b t₀ εf εg δ : ℝ",
    "hv : ∀ (t : ℝ), LipschitzOnWith K (v t) (s t)",
    "ht : t₀ ∈ Ioo a b",
    "hf : ∀ t ∈ Ioo a b, HasDerivAt f (v t (f t)) t ∧ f t ∈ s t",
    "hg : ∀ t ∈ Ioo a b, HasDerivAt g (v t (g t)) t ∧ g t ∈ s t",
    "heq : f t₀ = g t₀",
    "t' : ℝ",
    "ht' : t' ∈ Ioo a b",
    "h : t₀ ≤ t'"
  ],
  "goal": "f t' = g t'"
} | 
	[
  14316
] | 
	[
  "Mathlib/Analysis/ODE/Gronwall.lean"
] | 
| 
	{
  "context": [
    "C : Type u₁",
    "inst✝⁸ : Category.{v₁, u₁} C",
    "inst✝⁷ : MonoidalCategory C",
    "inst✝⁶ : BraidedCategory C",
    "D : Type u₂",
    "inst✝⁵ : Category.{v₂, u₂} D",
    "inst✝⁴ : MonoidalCategory D",
    "inst✝³ : BraidedCategory D",
    "E : Type u₃",
    "inst✝² : Category.{v₃, u₃} E",
    "inst✝¹ : MonoidalCategory E",
    "inst✝ : BraidedCategory E",
    "Z₁ Z₂ X₁ X₂ Y₁ Y₂ : C",
    "f₁ : X₁ ⟶ Y₁",
    "f₂ : X₂ ⟶ Y₂"
  ],
  "goal": "(Z₁ ⊗ Z₂) ◁ (f₁ ⊗ f₂) ≫ tensor_μ C (Z₁, Z₂) (Y₁, Y₂) = tensor_μ C (Z₁, Z₂) (X₁, X₂) ≫ (Z₁ ◁ f₁ ⊗ Z₂ ◁ f₂)"
} | 
	[
  107138
] | 
	[
  "Mathlib/CategoryTheory/Monoidal/Braided/Basic.lean"
] | 
| 
	{
  "context": [
    "C : Type u_1",
    "inst✝⁸ : Category.{u_3, u_1} C",
    "inst✝⁷ : Preadditive C",
    "𝕜 : Type u_2",
    "inst✝⁶ : Field 𝕜",
    "inst✝⁵ : IsAlgClosed 𝕜",
    "inst✝⁴ : Linear 𝕜 C",
    "inst✝³ : HasKernels C",
    "X Y : C",
    "inst✝² : FiniteDimensional 𝕜 (X ⟶ X)",
    "inst✝¹ : Simple X",
    "inst✝ : Simple Y"
  ],
  "goal": "finrank 𝕜 (X ⟶ Y) ≤ 1"
} | 
	[
  71959
] | 
	[
  "Mathlib/CategoryTheory/Preadditive/Schur.lean"
] | 
| 
	{
  "context": [
    "C : Type u_1",
    "inst✝⁸ : Category.{u_3, u_1} C",
    "inst✝⁷ : Preadditive C",
    "𝕜 : Type u_2",
    "inst✝⁶ : Field 𝕜",
    "inst✝⁵ : IsAlgClosed 𝕜",
    "inst✝⁴ : Linear 𝕜 C",
    "inst✝³ : HasKernels C",
    "X Y : C",
    "inst✝² : FiniteDimensional 𝕜 (X ⟶ X)",
    "inst✝¹ : Simple X",
    "inst✝ : Simple Y",
    "h : Subsingleton (X ⟶ Y)"
  ],
  "goal": "finrank 𝕜 (X ⟶ Y) ≤ 1"
} | 
	[
  71959
] | 
	[
  "Mathlib/CategoryTheory/Preadditive/Schur.lean"
] | 
| 
	{
  "context": [
    "C : Type u_1",
    "inst✝⁸ : Category.{u_3, u_1} C",
    "inst✝⁷ : Preadditive C",
    "𝕜 : Type u_2",
    "inst✝⁶ : Field 𝕜",
    "inst✝⁵ : IsAlgClosed 𝕜",
    "inst✝⁴ : Linear 𝕜 C",
    "inst✝³ : HasKernels C",
    "X Y : C",
    "inst✝² : FiniteDimensional 𝕜 (X ⟶ X)",
    "inst✝¹ : Simple X",
    "inst✝ : Simple Y",
    "h : Nontrivial (X ⟶ Y)"
  ],
  "goal": "finrank 𝕜 (X ⟶ Y) ≤ 1"
} | 
	[
  71959
] | 
	[
  "Mathlib/CategoryTheory/Preadditive/Schur.lean"
] | 
| 
	{
  "context": [
    "n : ℕ",
    "t : ℝ",
    "ht' : t ≤ ↑n"
  ],
  "goal": "(1 - t / ↑n) ^ n ≤ rexp (-t)"
} | 
	[
  70039,
  106248,
  149344
] | 
	[
  "Mathlib/Data/Complex/Exponential.lean"
] | 
| 
	{
  "context": [
    "t : ℝ",
    "ht' : t ≤ ↑0"
  ],
  "goal": "(1 - t / ↑0) ^ 0 ≤ rexp (-t)"
} | 
	[
  70039,
  106248,
  149344
] | 
	[
  "Mathlib/Data/Complex/Exponential.lean"
] | 
| 
	{
  "context": [
    "n : ℕ",
    "t : ℝ",
    "ht' : t ≤ ↑n",
    "hn : n ≠ 0"
  ],
  "goal": "(1 - t / ↑n) ^ n ≤ rexp (-t)"
} | 
	[
  106248,
  149344,
  70039
] | 
	[
  "Mathlib/Data/Complex/Exponential.lean"
] | 
| 
	{
  "context": [
    "n : ℕ",
    "t : ℝ",
    "ht' : t ≤ ↑n",
    "hn : n ≠ 0"
  ],
  "goal": "rexp (-t) = rexp (-(t / ↑n)) ^ n"
} | 
	[
  106248,
  149344
] | 
	[
  "Mathlib/Data/Complex/Exponential.lean"
] | 
| 
	{
  "context": [
    "n : ℕ",
    "t : ℝ",
    "ht' : t ≤ ↑n",
    "hn : n ≠ 0"
  ],
  "goal": "0 ≤ 1 - t / ↑n"
} | 
	[
  106248,
  149344
] | 
	[
  "Mathlib/Data/Complex/Exponential.lean"
] | 
| 
	{
  "context": [
    "R : Type u_1",
    "M : Type u_2",
    "inst✝² : CommRing R",
    "inst✝¹ : AddCommGroup M",
    "inst✝ : Module R M",
    "Q : QuadraticForm R M",
    "x : CliffordAlgebra Q"
  ],
  "goal": "↑((toEven Q) (reverse (involute x))) = reverse ↑((toEven Q) x)"
} | 
	[
  81956,
  81967,
  81968,
  81970,
  82298,
  82718,
  82721,
  82723,
  82725,
  117079,
  117080,
  117094,
  121060,
  122047,
  122048,
  122051,
  122054
] | 
	[
  "Mathlib/LinearAlgebra/CliffordAlgebra/EvenEquiv.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "E : Type u_2",
    "F : Type u_3",
    "m0 : MeasurableSpace α",
    "inst✝⁵ : NormedAddCommGroup E",
    "inst✝⁴ : NormedSpace ℝ E",
    "inst✝³ : CompleteSpace E",
    "inst✝² : NormedAddCommGroup F",
    "inst✝¹ : NormedSpace ℝ F",
    "inst✝ : CompleteSpace F",
    "μ ν : Measure α",
    "s t : Set α",
    "f✝ g✝ f g : α → ℝ≥0∞",
    "h : f =ᶠ[ae μ] g"
  ],
  "goal": "⨍⁻ (x : α), f x ∂μ = ⨍⁻ (x : α), g x ∂μ"
} | 
	[
  26860,
  30260
] | 
	[
  "Mathlib/MeasureTheory/Integral/Average.lean"
] | 
| 
	{
  "context": [
    "C : Type u",
    "inst✝² : Category.{v, u} C",
    "inst✝¹ : HasZeroMorphisms C",
    "S S₁ S₂ S₃ S₄ : ShortComplex C",
    "φ : S₁ ⟶ S₂",
    "h₁ : S₁.HomologyData",
    "h₂ : S₂.HomologyData",
    "A : C",
    "inst✝ : S.HasHomology",
    "h : S.LeftHomologyData"
  ],
  "goal": "(S.leftHomologyπ ≫ S.leftHomologyIso.hom) ≫ (S.leftHomologyIso.symm ≪≫ h.leftHomologyIso).hom = h.cyclesIso.hom ≫ h.π"
} | 
	[
  88745,
  88756,
  96173,
  115100
] | 
	[
  "Mathlib/Algebra/Homology/ShortComplex/Homology.lean"
] | 
| 
	{
  "context": [
    "ι : Sort u_1",
    "V : Type u",
    "W : Type v",
    "G : SimpleGraph V",
    "G' : SimpleGraph W",
    "v w : V",
    "hvw : G.Adj v w"
  ],
  "goal": "G.subgraphOfAdj ⋯ = G.subgraphOfAdj hvw"
} | 
	[
  1723,
  1726
] | 
	[
  "Mathlib/Combinatorics/SimpleGraph/Subgraph.lean"
] | 
| 
	{
  "context": [
    "α : Type u",
    "β : Type v",
    "inst✝ : Finite α",
    "s : Set α",
    "f : ↑s ↪ β",
    "h : Nonempty (α ≃ β)"
  ],
  "goal": "∃ g, ∀ (x : ↑s), g ↑x = f x"
} | 
	[
  49534
] | 
	[
  "Mathlib/SetTheory/Cardinal/Ordinal.lean"
] | 
| 
	{
  "context": [
    "α : Type u",
    "β : Type v",
    "inst✝ : Finite α",
    "s : Set α",
    "f : ↑s ↪ β",
    "h : Nonempty (α ≃ β)"
  ],
  "goal": "Nonempty (↑sᶜ ≃ ↑(range ⇑f)ᶜ)"
} | 
	[
  49534
] | 
	[
  "Mathlib/SetTheory/Cardinal/Ordinal.lean"
] | 
| 
	{
  "context": [
    "α : Type u",
    "β : Type v",
    "inst✝ : Finite α",
    "s : Set α",
    "f : ↑s ↪ β",
    "h : Nonempty (α ≃ β)",
    "g : α ≃ β"
  ],
  "goal": "Nonempty (↑sᶜ ≃ ↑(range ⇑f)ᶜ)"
} | 
	[
  48597,
  48597,
  49531
] | 
	[
  "Mathlib/SetTheory/Cardinal/Ordinal.lean"
] | 
| 
	{
  "context": [
    "α : Type u",
    "β : Type v",
    "inst✝ : Finite α",
    "s : Set α",
    "f : ↑s ↪ β",
    "h : lift.{max u v, u} #α = lift.{max u v, v} #β",
    "g : α ≃ β"
  ],
  "goal": "Nonempty (↑sᶜ ≃ ↑(range ⇑f)ᶜ)"
} | 
	[
  49531,
  48597
] | 
	[
  "Mathlib/SetTheory/Cardinal/Ordinal.lean"
] | 
| 
	{
  "context": [
    "α : Type u",
    "β : Type v",
    "inst✝ : Finite α",
    "s : Set α",
    "f : ↑s ↪ β",
    "h : lift.{max u v, u} #α = lift.{max u v, v} #β",
    "g : α ≃ β"
  ],
  "goal": "lift.{max u v, u} #↑s = lift.{max u v, v} #↑(range ⇑f)"
} | 
	[
  49531,
  48844,
  48597
] | 
	[
  "Mathlib/SetTheory/Cardinal/Ordinal.lean"
] | 
| 
	{
  "context": [
    "α : Type u",
    "β : Type v",
    "inst✝ : Finite α",
    "s : Set α",
    "f : ↑s ↪ β",
    "h : lift.{max u v, u} #α = lift.{max u v, v} #β",
    "g : α ≃ β"
  ],
  "goal": "Injective ⇑f"
} | 
	[
  48844,
  70654
] | 
	[
  "Mathlib/SetTheory/Cardinal/Ordinal.lean"
] | 
| 
	{
  "context": [],
  "goal": "@zipWithLeft' = @zipWithLeft'TR"
} | 
	[
  1838
] | 
	[
  ".lake/packages/batteries/Batteries/Data/List/Basic.lean"
] | 
| 
	{
  "context": [
    "α : Type u_3",
    "β : Type u_2",
    "γ : Type u_1",
    "f : α → Option β → γ",
    "as : List α",
    "bs : List β"
  ],
  "goal": "zipWithLeft' f as bs = zipWithLeft'TR f as bs"
} | 
	[
  1838
] | 
	[
  ".lake/packages/batteries/Batteries/Data/List/Basic.lean"
] | 
| 
	{
  "context": [
    "α : Type u_3",
    "β : Type u_2",
    "γ : Type u_1",
    "f : α → Option β → γ",
    "as : List α",
    "bs : List β",
    "acc : Array γ",
    "head✝ : α",
    "tail✝ : List α"
  ],
  "goal": "zipWithLeft'TR.go f (head✝ :: tail✝) [] acc = match zipWithLeft' f (head✝ :: tail✝) [] with | (l, r) => (acc.toList ++ l, r)"
} | 
	[
  5846
] | 
	[
  ".lake/packages/batteries/Batteries/Data/List/Basic.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "β : Type u_2",
    "G : Type u_3",
    "M : Type u_4",
    "inst✝ : CommGroup G",
    "a✝ b✝ c d a b : G"
  ],
  "goal": "a * (b / a) = b"
} | 
	[
  118077,
  117806
] | 
	[
  "Mathlib/Algebra/Group/Basic.lean"
] | 
| 
	{
  "context": [
    "ι : Type u_1",
    "X : Type u_2",
    "Y : Type u_3",
    "inst✝⁵ : EMetricSpace X",
    "inst✝⁴ : EMetricSpace Y",
    "inst✝³ : MeasurableSpace X",
    "inst✝² : BorelSpace X",
    "inst✝¹ : MeasurableSpace Y",
    "inst✝ : BorelSpace Y"
  ],
  "goal": "μH[1] = volume"
} | 
	[
  26594,
  30824,
  30825,
  88683,
  141373,
  143125
] | 
	[
  "Mathlib/MeasureTheory/Measure/Hausdorff.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "f g h : Perm α",
    "x : α",
    "hfx : f x = x",
    "n : ℕ"
  ],
  "goal": "(f ^ Int.negSucc n) x = x"
} | 
	[
  7831,
  8652,
  119787
] | 
	[
  "Mathlib/GroupTheory/Perm/Support.lean"
] | 
| 
	{
  "context": [
    "𝕜 : Type u_1",
    "inst✝¹⁰ : NontriviallyNormedField 𝕜",
    "D : Type uD",
    "inst✝⁹ : NormedAddCommGroup D",
    "inst✝⁸ : NormedSpace 𝕜 D",
    "E : Type uE",
    "inst✝⁷ : NormedAddCommGroup E",
    "inst✝⁶ : NormedSpace 𝕜 E",
    "F : Type uF",
    "inst✝⁵ : NormedAddCommGroup F",
    "inst✝⁴ : NormedSpace 𝕜 F",
    "G : Type uG",
    "inst✝³ : NormedAddCommGroup G",
    "inst✝² : NormedSpace 𝕜 G",
    "X : Type u_2",
    "inst✝¹ : NormedAddCommGroup X",
    "inst✝ : NormedSpace 𝕜 X",
    "s s₁ t u : Set E",
    "f✝ f₁ : E → F",
    "g : F → G",
    "x x₀ : E",
    "c : F",
    "b : E × F → G",
    "m n : ℕ∞",
    "p : E → FormalMultilinearSeries 𝕜 E F",
    "f : E → F",
    "hf : ContDiff 𝕜 n f",
    "hmn : m + 1 ≤ n"
  ],
  "goal": "ContDiff 𝕜 m fun p => (fderiv 𝕜 f p.1) p.2"
} | 
	[
  48434,
  46361,
  133914
] | 
	[
  "Mathlib/Analysis/Calculus/ContDiff/Basic.lean"
] | 
| 
	{
  "context": [
    "𝕜 : Type u_1",
    "inst✝¹⁰ : NontriviallyNormedField 𝕜",
    "D : Type uD",
    "inst✝⁹ : NormedAddCommGroup D",
    "inst✝⁸ : NormedSpace 𝕜 D",
    "E : Type uE",
    "inst✝⁷ : NormedAddCommGroup E",
    "inst✝⁶ : NormedSpace 𝕜 E",
    "F : Type uF",
    "inst✝⁵ : NormedAddCommGroup F",
    "inst✝⁴ : NormedSpace 𝕜 F",
    "G : Type uG",
    "inst✝³ : NormedAddCommGroup G",
    "inst✝² : NormedSpace 𝕜 G",
    "X : Type u_2",
    "inst✝¹ : NormedAddCommGroup X",
    "inst✝ : NormedSpace 𝕜 X",
    "s s₁ t u : Set E",
    "f✝ f₁ : E → F",
    "g : F → G",
    "x x₀ : E",
    "c : F",
    "b : E × F → G",
    "m n : ℕ∞",
    "p : E → FormalMultilinearSeries 𝕜 E F",
    "f : E → F",
    "hf : ContDiffOn 𝕜 n f univ",
    "hmn : m + 1 ≤ n"
  ],
  "goal": "ContDiffOn 𝕜 m (fun p => (fderiv 𝕜 f p.1) p.2) univ"
} | 
	[
  46361,
  48434,
  133914
] | 
	[
  "Mathlib/Analysis/Calculus/ContDiff/Basic.lean"
] | 
| 
	{
  "context": [
    "𝕜 : Type u_1",
    "inst✝¹⁰ : NontriviallyNormedField 𝕜",
    "D : Type uD",
    "inst✝⁹ : NormedAddCommGroup D",
    "inst✝⁸ : NormedSpace 𝕜 D",
    "E : Type uE",
    "inst✝⁷ : NormedAddCommGroup E",
    "inst✝⁶ : NormedSpace 𝕜 E",
    "F : Type uF",
    "inst✝⁵ : NormedAddCommGroup F",
    "inst✝⁴ : NormedSpace 𝕜 F",
    "G : Type uG",
    "inst✝³ : NormedAddCommGroup G",
    "inst✝² : NormedSpace 𝕜 G",
    "X : Type u_2",
    "inst✝¹ : NormedAddCommGroup X",
    "inst✝ : NormedSpace 𝕜 X",
    "s s₁ t u : Set E",
    "f✝ f₁ : E → F",
    "g : F → G",
    "x x₀ : E",
    "c : F",
    "b : E × F → G",
    "m n : ℕ∞",
    "p : E → FormalMultilinearSeries 𝕜 E F",
    "f : E → F",
    "hf : ContDiffOn 𝕜 n f univ",
    "hmn : m + 1 ≤ n"
  ],
  "goal": "ContDiffOn 𝕜 m (fun p => (fderivWithin 𝕜 f univ p.1) p.2) (univ ×ˢ univ)"
} | 
	[
  46361,
  133914,
  51651,
  45679
] | 
	[
  "Mathlib/Analysis/Calculus/ContDiff/Basic.lean"
] | 
| 
	{
  "context": [
    "n : ℕ",
    "c : Char",
    "l : List Char"
  ],
  "goal": "{ data := l }.IsSuffix (leftpad n c { data := l })"
} | 
	[
  1455
] | 
	[
  "Mathlib/Data/String/Lemmas.lean"
] | 
| 
	{
  "context": [
    "X : Type u_1",
    "Y : Type u_2",
    "Z : Type u_3",
    "inst✝² : PseudoEMetricSpace X",
    "inst✝¹ : PseudoEMetricSpace Y",
    "inst✝ : PseudoEMetricSpace Z",
    "e : X ≃ᵢ Y"
  ],
  "goal": "ratio e.toDilationEquiv = 1"
} | 
	[
  60798,
  60825,
  61569
] | 
	[
  "Mathlib/Topology/MetricSpace/DilationEquiv.lean"
] | 
| 
	{
  "context": [
    "n : ℕ"
  ],
  "goal": "χ₈ ↑n = χ₈ ↑(n % 8)"
} | 
	[
  138369
] | 
	[
  "Mathlib/NumberTheory/LegendreSymbol/ZModChar.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "β : Type u_2",
    "γ : Type u_3",
    "ι : Sort u_4",
    "ι' : Sort u_5",
    "ι₂ : Sort u_6",
    "κ : ι → Sort u_7",
    "κ₁ : ι → Sort u_8",
    "κ₂ : ι → Sort u_9",
    "κ' : ι' → Sort u_10",
    "P : ι → α → Prop",
    "x✝ : α"
  ],
  "goal": "x✝ ∈ ⋂ i, {x | P i x} ↔ x✝ ∈ {x | ∀ (i : ι), P i x}"
} | 
	[
  16574
] | 
	[
  "Mathlib/Data/Set/Lattice.lean"
] | 
| 
	{
  "context": [
    "α : Type u",
    "β : Type v",
    "γ : Type w",
    "δ : Type u_1",
    "ι : Sort x",
    "f : Filter α",
    "p : α → Prop",
    "q : Prop"
  ],
  "goal": "(∀ᶠ (x : α) in f, p x → q) ↔ (∃ᶠ (x : α) in f, p x) → q"
} | 
	[
  16036,
  16061,
  70070
] | 
	[
  "Mathlib/Order/Filter/Basic.lean"
] | 
| 
	{
  "context": [
    "C : Type u",
    "inst✝ : Category.{v, u} C",
    "X✝ Y✝ X Y Z : C",
    "sXY : BinaryFan X Y",
    "P : IsLimit sXY",
    "sYZ : BinaryFan Y Z",
    "Q : IsLimit sYZ",
    "s : BinaryFan sXY.pt Z",
    "R : IsLimit s",
    "t : Cone (pair X sYZ.pt)"
  ],
  "goal": "R.lift (BinaryFan.assocInv P t) ≫ Q.lift (BinaryFan.mk (s.fst ≫ sXY.snd) s.snd) = BinaryFan.snd t"
} | 
	[
  94261
] | 
	[
  "Mathlib/CategoryTheory/Monoidal/OfChosenFiniteProducts/Basic.lean"
] | 
| 
	{
  "context": [
    "C : Type u",
    "inst✝ : Category.{v, u} C",
    "X✝ Y✝ X Y Z : C",
    "sXY : BinaryFan X Y",
    "P : IsLimit sXY",
    "sYZ : BinaryFan Y Z",
    "Q : IsLimit sYZ",
    "s : BinaryFan sXY.pt Z",
    "R : IsLimit s",
    "t : Cone (pair X sYZ.pt)"
  ],
  "goal": "∀ (j : Discrete WalkingPair), (R.lift (BinaryFan.assocInv P t) ≫ Q.lift (BinaryFan.mk (s.fst ≫ sXY.snd) s.snd)) ≫ sYZ.π.app j = BinaryFan.snd t ≫ sYZ.π.app j"
} | 
	[
  94261
] | 
	[
  "Mathlib/CategoryTheory/Monoidal/OfChosenFiniteProducts/Basic.lean"
] | 
| 
	{
  "context": [
    "C : Type u",
    "inst✝ : Category.{v, u} C",
    "X✝ Y✝ X Y Z : C",
    "sXY : BinaryFan X Y",
    "P : IsLimit sXY",
    "sYZ : BinaryFan Y Z",
    "Q : IsLimit sYZ",
    "s : BinaryFan sXY.pt Z",
    "R : IsLimit s",
    "t : Cone (pair X sYZ.pt)",
    "m : t.pt ⟶ (BinaryFan.assoc Q s).pt",
    "w : ∀ (j : Discrete WalkingPair), m ≫ (BinaryFan.assoc Q s).π.app j = t.π.app j"
  ],
  "goal": "m = (fun t => R.lift (BinaryFan.assocInv P t)) t"
} | 
	[
  94242
] | 
	[
  "Mathlib/CategoryTheory/Monoidal/OfChosenFiniteProducts/Basic.lean"
] | 
| 
	{
  "context": [
    "C : Type u",
    "inst✝ : Category.{v, u} C",
    "X✝ Y✝ X Y Z : C",
    "sXY : BinaryFan X Y",
    "P : IsLimit sXY",
    "sYZ : BinaryFan Y Z",
    "Q : IsLimit sYZ",
    "s : BinaryFan sXY.pt Z",
    "R : IsLimit s",
    "t : Cone (pair X sYZ.pt)",
    "m : t.pt ⟶ (BinaryFan.assoc Q s).pt",
    "w : ∀ (j : Discrete WalkingPair), m ≫ (BinaryFan.assoc Q s).π.app j = t.π.app j",
    "h : (∀ (j : Discrete WalkingPair), m ≫ s.π.app j = (BinaryFan.assocInv P t).π.app j) → m = R.lift (BinaryFan.assocInv P t)"
  ],
  "goal": "m = (fun t => R.lift (BinaryFan.assocInv P t)) t"
} | 
	[
  94242
] | 
	[
  "Mathlib/CategoryTheory/Monoidal/OfChosenFiniteProducts/Basic.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "inst✝³ : Fintype α",
    "G✝ : Type u_2",
    "inst✝² : Group G✝",
    "n : ℕ",
    "G : Type u_3",
    "inst✝¹ : Group G",
    "inst✝ : Finite G",
    "p : ℕ",
    "hp : Fact (Nat.Prime p)",
    "hdvd : p ∣ Nat.card G",
    "this : Fintype G"
  ],
  "goal": "∃ x, orderOf x = p"
} | 
	[
  9409,
  47564
] | 
	[
  "Mathlib/GroupTheory/Perm/Cycle/Type.lean"
] | 
| 
	{
  "context": [
    "α : Type u_1",
    "inst✝³ : Fintype α",
    "G✝ : Type u_2",
    "inst✝² : Group G✝",
    "n : ℕ",
    "G : Type u_3",
    "inst✝¹ : Group G",
    "inst✝ : Finite G",
    "p : ℕ",
    "hp : Fact (Nat.Prime p)",
    "this : Fintype G",
    "hdvd : p ∣ Fintype.card G"
  ],
  "goal": "∃ x, orderOf x = p"
} | 
	[
  9409,
  47564
] | 
	[
  "Mathlib/GroupTheory/Perm/Cycle/Type.lean"
] | 
| 
	{
  "context": [
    "K : Type u_1",
    "inst✝¹ : Field K",
    "inst✝ : NumberField K",
    "B✝ B : ℝ",
    "hB : B ≤ 0"
  ],
  "goal": "volume (convexBodySum K B) = 0"
} | 
	[
  14302
] | 
	[
  "Mathlib/NumberTheory/NumberField/CanonicalEmbedding/ConvexBody.lean"
] | 
| 
	{
  "context": [
    "K : Type u_1",
    "inst✝¹ : Field K",
    "inst✝ : NumberField K",
    "B✝ B : ℝ",
    "hB✝ : B ≤ 0",
    "hB : B < 0"
  ],
  "goal": "volume (convexBodySum K B) = 0"
} | 
	[
  14302
] | 
	[
  "Mathlib/NumberTheory/NumberField/CanonicalEmbedding/ConvexBody.lean"
] | 
| 
	{
  "context": [
    "K : Type u_1",
    "inst✝¹ : Field K",
    "inst✝ : NumberField K",
    "B✝ B : ℝ",
    "hB✝ : B ≤ 0",
    "hB : B = 0"
  ],
  "goal": "volume (convexBodySum K B) = 0"
} | 
	[
  14302
] | 
	[
  "Mathlib/NumberTheory/NumberField/CanonicalEmbedding/ConvexBody.lean"
] | 
| 
	{
  "context": [
    "G : Type u_1",
    "H : Type u_2",
    "α : Type u_3",
    "β : Type u_4",
    "E : Type u_5",
    "inst✝⁶ : Group G",
    "inst✝⁵ : MulAction G α",
    "inst✝⁴ : MeasurableSpace α",
    "μ : Measure α",
    "inst✝³ : Countable G",
    "inst✝² : MeasurableSpace G",
    "s t : Set α",
    "inst✝¹ : SMulInvariantMeasure G α μ",
    "inst✝ : MeasurableSMul G α",
    "fund_dom_s : IsFundamentalDomain G s μ",
    "fund_dom_t : IsFundamentalDomain G t μ",
    "U : Set (Quotient α_mod_G)",
    "meas_U : MeasurableSet U"
  ],
  "goal": "(Measure.map (Quotient.mk α_mod_G) (μ.restrict s)) U = (Measure.map (Quotient.mk α_mod_G) (μ.restrict t)) U"
} | 
	[
  33097,
  33035
] | 
	[
  "Mathlib/MeasureTheory/Group/FundamentalDomain.lean"
] | 
| 
	{
  "context": [
    "G : Type u_1",
    "H : Type u_2",
    "α : Type u_3",
    "β : Type u_4",
    "E : Type u_5",
    "inst✝⁶ : Group G",
    "inst✝⁵ : MulAction G α",
    "inst✝⁴ : MeasurableSpace α",
    "μ : Measure α",
    "inst✝³ : Countable G",
    "inst✝² : MeasurableSpace G",
    "s t : Set α",
    "inst✝¹ : SMulInvariantMeasure G α μ",
    "inst✝ : MeasurableSMul G α",
    "fund_dom_s : IsFundamentalDomain G s μ",
    "fund_dom_t : IsFundamentalDomain G t μ",
    "U : Set (Quotient α_mod_G)",
    "meas_U : MeasurableSet U"
  ],
  "goal": "μ (Quotient.mk α_mod_G ⁻¹' U ∩ s) = μ (Quotient.mk α_mod_G ⁻¹' U ∩ t)"
} | 
	[
  33097,
  33035
] | 
	[
  "Mathlib/MeasureTheory/Group/FundamentalDomain.lean"
] | 
| 
	{
  "context": [
    "G : Type u_1",
    "H : Type u_2",
    "α : Type u_3",
    "β : Type u_4",
    "E : Type u_5",
    "inst✝⁶ : Group G",
    "inst✝⁵ : MulAction G α",
    "inst✝⁴ : MeasurableSpace α",
    "μ : Measure α",
    "inst✝³ : Countable G",
    "inst✝² : MeasurableSpace G",
    "s t : Set α",
    "inst✝¹ : SMulInvariantMeasure G α μ",
    "inst✝ : MeasurableSMul G α",
    "fund_dom_s : IsFundamentalDomain G s μ",
    "fund_dom_t : IsFundamentalDomain G t μ",
    "U : Set (Quotient α_mod_G)",
    "meas_U : MeasurableSet U"
  ],
  "goal": "MeasurableSet (Quotient.mk α_mod_G ⁻¹' U)"
} | 
	[
  33035
] | 
	[
  "Mathlib/MeasureTheory/Group/FundamentalDomain.lean"
] | 
| 
	{
  "context": [
    "G : Type u_1",
    "H : Type u_2",
    "α : Type u_3",
    "β : Type u_4",
    "E : Type u_5",
    "inst✝⁶ : Group G",
    "inst✝⁵ : MulAction G α",
    "inst✝⁴ : MeasurableSpace α",
    "μ : Measure α",
    "inst✝³ : Countable G",
    "inst✝² : MeasurableSpace G",
    "s t : Set α",
    "inst✝¹ : SMulInvariantMeasure G α μ",
    "inst✝ : MeasurableSMul G α",
    "fund_dom_s : IsFundamentalDomain G s μ",
    "fund_dom_t : IsFundamentalDomain G t μ",
    "U : Set (Quotient α_mod_G)",
    "meas_U : MeasurableSet U"
  ],
  "goal": "∀ (g : G), (fun x => g • x) ⁻¹' (Quotient.mk α_mod_G ⁻¹' U) = Quotient.mk α_mod_G ⁻¹' U"
} | 
	[
  33035
] | 
	[
  "Mathlib/MeasureTheory/Group/FundamentalDomain.lean"
] | 
| 
	{
  "context": [
    "R : Type u_1",
    "inst✝¹⁶ : CommSemiring R",
    "R' : Type u_2",
    "inst✝¹⁵ : Monoid R'",
    "R'' : Type u_3",
    "inst✝¹⁴ : Semiring R''",
    "M : Type u_4",
    "N : Type u_5",
    "P : Type u_6",
    "Q : Type u_7",
    "S : Type u_8",
    "T : Type u_9",
    "inst✝¹³ : AddCommMonoid M",
    "inst✝¹² : AddCommMonoid N",
    "inst✝¹¹ : AddCommMonoid P",
    "inst✝¹⁰ : AddCommMonoid Q",
    "inst✝⁹ : AddCommMonoid S",
    "inst✝⁸ : AddCommMonoid T",
    "inst✝⁷ : Module R M",
    "inst✝⁶ : Module R N",
    "inst✝⁵ : Module R P",
    "inst✝⁴ : Module R Q",
    "inst✝³ : Module R S",
    "inst✝² : Module R T",
    "inst✝¹ : DistribMulAction R' M",
    "inst✝ : Module R'' M",
    "g✝ : P →ₗ[R] Q",
    "f✝ : N →ₗ[R] P",
    "f : M →ₗ[R] P",
    "g : N →ₗ[R] Q"
  ],
  "goal": "lTensor P g ∘ₗ rTensor N f = map f g"
} | 
	[
  86898,
  109760,
  109761
] | 
	[
  "Mathlib/LinearAlgebra/TensorProduct/Basic.lean"
] | 
| 
	{
  "context": [
    "𝕜 : Type u_1",
    "inst✝¹¹ : NontriviallyNormedField 𝕜",
    "E : Type u_2",
    "inst✝¹⁰ : NormedAddCommGroup E",
    "inst✝⁹ : NormedSpace 𝕜 E",
    "H : Type u_3",
    "inst✝⁸ : TopologicalSpace H",
    "I : ModelWithCorners 𝕜 E H",
    "M : Type u_4",
    "inst✝⁷ : TopologicalSpace M",
    "inst✝⁶ : ChartedSpace H M",
    "E' : Type u_5",
    "inst✝⁵ : NormedAddCommGroup E'",
    "inst✝⁴ : NormedSpace 𝕜 E'",
    "H' : Type u_6",
    "inst✝³ : TopologicalSpace H'",
    "N : Type u_7",
    "inst✝² : TopologicalSpace N",
    "inst✝¹ : ChartedSpace H' N",
    "J : ModelWithCorners 𝕜 E' H'",
    "inst✝ : SmoothManifoldWithCorners J N",
    "x : M",
    "y : N",
    "p : M × N"
  ],
  "goal": "p ∈ (I.prod J).interior (M × N) ↔ p ∈ I.interior M ×ˢ J.interior N"
} | 
	[
  66448,
  67778,
  133949
] | 
	[
  "Mathlib/Geometry/Manifold/InteriorBoundary.lean"
] | 
| 
	{
  "context": [
    "𝕜 : Type u_1",
    "inst✝¹¹ : NontriviallyNormedField 𝕜",
    "E : Type u_2",
    "inst✝¹⁰ : NormedAddCommGroup E",
    "inst✝⁹ : NormedSpace 𝕜 E",
    "H : Type u_3",
    "inst✝⁸ : TopologicalSpace H",
    "I : ModelWithCorners 𝕜 E H",
    "M : Type u_4",
    "inst✝⁷ : TopologicalSpace M",
    "inst✝⁶ : ChartedSpace H M",
    "E' : Type u_5",
    "inst✝⁵ : NormedAddCommGroup E'",
    "inst✝⁴ : NormedSpace 𝕜 E'",
    "H' : Type u_6",
    "inst✝³ : TopologicalSpace H'",
    "N : Type u_7",
    "inst✝² : TopologicalSpace N",
    "inst✝¹ : ChartedSpace H' N",
    "J : ModelWithCorners 𝕜 E' H'",
    "inst✝ : SmoothManifoldWithCorners J N",
    "x : M",
    "y : N",
    "p : M × N",
    "aux : interior (range ↑I) ×ˢ interior (range ↑J) = interior (range ↑(I.prod J))"
  ],
  "goal": "p ∈ (I.prod J).interior (M × N) ↔ p ∈ I.interior M ×ˢ J.interior N"
} | 
	[
  66448,
  67778,
  133949
] | 
	[
  "Mathlib/Geometry/Manifold/InteriorBoundary.lean"
] | 
| 
	{
  "context": [
    "V : Type u_1",
    "P : Type u_2",
    "inst✝⁴ : NormedAddCommGroup V",
    "inst✝³ : InnerProductSpace ℝ V",
    "inst✝² : MetricSpace P",
    "inst✝¹ : NormedAddTorsor V P",
    "hd2 : Fact (finrank ℝ V = 2)",
    "inst✝ : Module.Oriented ℝ V (Fin 2)",
    "p₁ p₂ p₃ p₄ : P",
    "h : Wbtw ℝ p₁ p₂ p₃",
    "hne : p₂ ≠ p₃"
  ],
  "goal": "(∡ p₂ p₄ p₃).sign = (∡ p₁ p₄ p₃).sign"
} | 
	[
  1690,
  38396,
  70344,
  70410
] | 
	[
  "Mathlib/Geometry/Euclidean/Angle/Oriented/Affine.lean"
] | 
| 
	{
  "context": [
    "ι α β : Type u",
    "c : Cardinal.{u}",
    "l : Filter α",
    "inst✝ : CardinalInterFilter l c",
    "s : ι → Set α",
    "hic : #ι < c"
  ],
  "goal": "⋂ i, s i ∈ l ↔ ∀ (i : ι), s i ∈ l"
} | 
	[
  135425,
  1715,
  12656,
  14288,
  48841
] | 
	[
  "Mathlib/Order/Filter/CardinalInter.lean"
] | 
| 
	{
  "context": [
    "ι α β : Type u",
    "c : Cardinal.{u}",
    "l : Filter α",
    "inst✝ : CardinalInterFilter l c",
    "s : ι → Set α",
    "hic : #ι < c"
  ],
  "goal": "⋂₀ range s ∈ l ↔ ∀ (i : ι), s i ∈ l"
} | 
	[
  135425,
  48841,
  12656,
  14288,
  1715
] | 
	[
  "Mathlib/Order/Filter/CardinalInter.lean"
] | 
| 
	{
  "context": [
    "ι α β : Type u",
    "c : Cardinal.{u}",
    "l : Filter α",
    "inst✝ : CardinalInterFilter l c",
    "s : ι → Set α",
    "hic : #ι < c"
  ],
  "goal": "(∀ s_1 ∈ range s, s_1 ∈ l) ↔ ∀ (i : ι), s i ∈ l"
} | 
	[
  48841,
  12656,
  14288,
  1715,
  134168
] | 
	[
  "Mathlib/Order/Filter/CardinalInter.lean"
] | 
| 
	{
  "context": [
    "α : Type u",
    "a : α",
    "inst✝² : Group α",
    "inst✝¹ : DecidableEq α",
    "inst✝ : Fintype α",
    "hn : ∀ (n : ℕ), 0 < n → (filter (fun a => a ^ n = 1) univ).card ≤ n",
    "d : ℕ",
    "hd : d ∣ Fintype.card α",
    "c : ℕ := Fintype.card α"
  ],
  "goal": "(filter (fun a => orderOf a = d) univ).card = φ d"
} | 
	[
  141401,
  1674,
  7980
] | 
	[
  "Mathlib/GroupTheory/SpecificGroups/Cyclic.lean"
] | 
| 
	{
  "context": [
    "α : Type u",
    "a : α",
    "inst✝² : Group α",
    "inst✝¹ : DecidableEq α",
    "inst✝ : Fintype α",
    "hn : ∀ (n : ℕ), 0 < n → (filter (fun a => a ^ n = 1) univ).card ≤ n",
    "d : ℕ",
    "hd : d ∣ Fintype.card α",
    "c : ℕ := Fintype.card α",
    "hc0 : 0 < c"
  ],
  "goal": "(filter (fun a => orderOf a = d) univ).card = φ d"
} | 
	[
  141401,
  1674,
  7980
] | 
	[
  "Mathlib/GroupTheory/SpecificGroups/Cyclic.lean"
] | 
| 
	{
  "context": [
    "α : Type u",
    "a : α",
    "inst✝² : Group α",
    "inst✝¹ : DecidableEq α",
    "inst✝ : Fintype α",
    "hn : ∀ (n : ℕ), 0 < n → (filter (fun a => a ^ n = 1) univ).card ≤ n",
    "d : ℕ",
    "hd : d ∣ Fintype.card α",
    "c : ℕ := Fintype.card α",
    "hc0 : 0 < c"
  ],
  "goal": "0 < (filter (fun a => orderOf a = d) univ).card"
} | 
	[
  7980,
  1734
] | 
	[
  "Mathlib/GroupTheory/SpecificGroups/Cyclic.lean"
] | 
| 
	{
  "context": [
    "α : Type u",
    "a : α",
    "inst✝² : Group α",
    "inst✝¹ : DecidableEq α",
    "inst✝ : Fintype α",
    "hn : ∀ (n : ℕ), 0 < n → (filter (fun a => a ^ n = 1) univ).card ≤ n",
    "d : ℕ",
    "hd : d ∣ Fintype.card α",
    "c : ℕ := Fintype.card α",
    "hc0 : 0 < c",
    "h0 : ¬0 < (filter (fun a => orderOf a = d) univ).card"
  ],
  "goal": "False"
} | 
	[
  137616,
  14323,
  3806,
  1734
] | 
	[
  "Mathlib/GroupTheory/SpecificGroups/Cyclic.lean"
] | 
| 
	{
  "context": [
    "α : Type u",
    "a : α",
    "inst✝² : Group α",
    "inst✝¹ : DecidableEq α",
    "inst✝ : Fintype α",
    "hn : ∀ (n : ℕ), 0 < n → (filter (fun a => a ^ n = 1) univ).card ≤ n",
    "d : ℕ",
    "hd : d ∣ Fintype.card α",
    "c : ℕ := Fintype.card α",
    "hc0 : 0 < c",
    "h0 : filter (fun a => orderOf a = d) univ = ∅"
  ],
  "goal": "False"
} | 
	[
  137616,
  14323,
  3806,
  14279
] | 
	[
  "Mathlib/GroupTheory/SpecificGroups/Cyclic.lean"
] | 
| 
	{
  "context": [
    "α : Type u",
    "a : α",
    "inst✝² : Group α",
    "inst✝¹ : DecidableEq α",
    "inst✝ : Fintype α",
    "hn : ∀ (n : ℕ), 0 < n → (filter (fun a => a ^ n = 1) univ).card ≤ n",
    "d : ℕ",
    "hd : d ∣ Fintype.card α",
    "c : ℕ := Fintype.card α",
    "hc0 : 0 < c",
    "h0 : filter (fun a => orderOf a = d) univ = ∅"
  ],
  "goal": "c < c"
} | 
	[
  14279
] | 
	[
  "Mathlib/GroupTheory/SpecificGroups/Cyclic.lean"
] | 
| 
	{
  "context": [
    "ι : Type u_1",
    "α : ι → Type u_2",
    "β : ι → Type u_3",
    "s s₁ s₂ : Set ι",
    "t✝ t₁ t₂ : (i : ι) → Set (α i)",
    "i : ι",
    "inst✝ : DecidableEq ι",
    "hi : i ∈ s",
    "f : (j : ι) → α j",
    "a : α i",
    "t : (j : ι) → α j → Set (β j)"
  ],
  "goal": "(s.pi fun j => t j (update f i a j)) = ({i} ∪ s \\ {i}).pi fun j => t j (update f i a j)"
} | 
	[
  1674,
  133417,
  133525,
  133678
] | 
	[
  "Mathlib/Data/Set/Prod.lean"
] | 
| 
	{
  "context": [
    "ι : Type u_1",
    "α : ι → Type u_2",
    "β : ι → Type u_3",
    "s s₁ s₂ : Set ι",
    "t✝ t₁ t₂ : (i : ι) → Set (α i)",
    "i : ι",
    "inst✝ : DecidableEq ι",
    "hi : i ∈ s",
    "f : (j : ι) → α j",
    "a : α i",
    "t : (j : ι) → α j → Set (β j)"
  ],
  "goal": "(({i} ∪ s \\ {i}).pi fun j => t j (update f i a j)) = {x | x i ∈ t i a} ∩ (s \\ {i}).pi fun j => t j (f j)"
} | 
	[
  71464,
  134029,
  134033,
  134036
] | 
	[
  "Mathlib/Data/Set/Prod.lean"
] | 
| 
	{
  "context": [
    "ι : Type u_1",
    "α : ι → Type u_2",
    "β : ι → Type u_3",
    "s s₁ s₂ : Set ι",
    "t✝ t₁ t₂ : (i : ι) → Set (α i)",
    "i : ι",
    "inst✝ : DecidableEq ι",
    "hi : i ∈ s",
    "f : (j : ι) → α j",
    "a : α i",
    "t : (j : ι) → α j → Set (β j)"
  ],
  "goal": "i ∉ s \\ {i}"
} | 
	[
  71464,
  134029,
  134033,
  134036
] | 
	[
  "Mathlib/Data/Set/Prod.lean"
] | 
| 
	{
  "context": [
    "C : Type u_1",
    "inst✝ : Category.{u_2, u_1} C",
    "A✝ B✝ B'✝ X✝ Y✝ Y' : C",
    "i✝ : A✝ ⟶ B✝",
    "i'✝ : B✝ ⟶ B'✝",
    "p✝ : X✝ ⟶ Y✝",
    "p' : Y✝ ⟶ Y'",
    "A B A' B' X Y : C",
    "i : A ⟶ B",
    "i' : A' ⟶ B'",
    "e : Arrow.mk i ≅ Arrow.mk i'",
    "p : X ⟶ Y",
    "a✝ : HasLiftingProperty i p"
  ],
  "goal": "HasLiftingProperty i' p"
} | 
	[
  96641
] | 
	[
  "Mathlib/CategoryTheory/LiftingProperties/Basic.lean"
] | 
| 
	{
  "context": [
    "C : Type u_1",
    "inst✝ : Category.{u_2, u_1} C",
    "A✝ B✝ B'✝ X✝ Y✝ Y' : C",
    "i✝ : A✝ ⟶ B✝",
    "i'✝ : B✝ ⟶ B'✝",
    "p✝ : X✝ ⟶ Y✝",
    "p' : Y✝ ⟶ Y'",
    "A B A' B' X Y : C",
    "i : A ⟶ B",
    "i' : A' ⟶ B'",
    "e : Arrow.mk i ≅ Arrow.mk i'",
    "p : X ⟶ Y",
    "a✝ : HasLiftingProperty i' p"
  ],
  "goal": "HasLiftingProperty i p"
} | 
	[
  96641
] | 
	[
  "Mathlib/CategoryTheory/LiftingProperties/Basic.lean"
] | 
| 
	{
  "context": [
    "V : Type u_1",
    "P : Type u_2",
    "inst✝³ : NormedAddCommGroup V",
    "inst✝² : InnerProductSpace ℝ V",
    "inst✝¹ : MetricSpace P",
    "inst✝ : NormedAddTorsor V P",
    "s : Set P",
    "hs : Cospherical s",
    "p : Fin 3 → P",
    "hps : Set.range p ⊆ s",
    "hpi : Function.Injective p"
  ],
  "goal": "AffineIndependent ℝ p"
} | 
	[
  83636
] | 
	[
  "Mathlib/Geometry/Euclidean/Sphere/Basic.lean"
] | 
| 
	{
  "context": [
    "V : Type u_1",
    "P : Type u_2",
    "inst✝³ : NormedAddCommGroup V",
    "inst✝² : InnerProductSpace ℝ V",
    "inst✝¹ : MetricSpace P",
    "inst✝ : NormedAddTorsor V P",
    "s : Set P",
    "hs : Cospherical s",
    "p : Fin 3 → P",
    "hps : Set.range p ⊆ s",
    "hpi : Function.Injective p"
  ],
  "goal": "¬Collinear ℝ (Set.range p)"
} | 
	[
  83636
] | 
	[
  "Mathlib/Geometry/Euclidean/Sphere/Basic.lean"
] | 
| 
	{
  "context": [
    "V : Type u_1",
    "P : Type u_2",
    "inst✝³ : NormedAddCommGroup V",
    "inst✝² : InnerProductSpace ℝ V",
    "inst✝¹ : MetricSpace P",
    "inst✝ : NormedAddTorsor V P",
    "s : Set P",
    "hs : Cospherical s",
    "p : Fin 3 → P",
    "hps : Set.range p ⊆ s",
    "hpi : Function.Injective p",
    "hc : Collinear ℝ (Set.range p)"
  ],
  "goal": "False"
} | 
	[
  83633,
  131596
] | 
	[
  "Mathlib/Geometry/Euclidean/Sphere/Basic.lean"
] | 
| 
	{
  "context": [
    "V : Type u_1",
    "P : Type u_2",
    "inst✝³ : NormedAddCommGroup V",
    "inst✝² : InnerProductSpace ℝ V",
    "inst✝¹ : MetricSpace P",
    "inst✝ : NormedAddTorsor V P",
    "s : Set P",
    "hs : Cospherical s",
    "p : Fin 3 → P",
    "hps : Set.range p ⊆ s",
    "hpi : Function.Injective p",
    "hc : ∃ v, ∀ p_1 ∈ Set.range p, ∃ r, p_1 = r • v +ᵥ p 0"
  ],
  "goal": "False"
} | 
	[
  83633,
  131596
] | 
	[
  "Mathlib/Geometry/Euclidean/Sphere/Basic.lean"
] | 
| 
	{
  "context": [
    "V : Type u_1",
    "P : Type u_2",
    "inst✝³ : NormedAddCommGroup V",
    "inst✝² : InnerProductSpace ℝ V",
    "inst✝¹ : MetricSpace P",
    "inst✝ : NormedAddTorsor V P",
    "s : Set P",
    "hs : Cospherical s",
    "p : Fin 3 → P",
    "hps : Set.range p ⊆ s",
    "hpi : Function.Injective p",
    "v : V",
    "hv : ∀ p_1 ∈ Set.range p, ∃ r, p_1 = r • v +ᵥ p 0"
  ],
  "goal": "False"
} | 
	[
  134168
] | 
	[
  "Mathlib/Geometry/Euclidean/Sphere/Basic.lean"
] | 
| 
	{
  "context": [
    "V : Type u_1",
    "P : Type u_2",
    "inst✝³ : NormedAddCommGroup V",
    "inst✝² : InnerProductSpace ℝ V",
    "inst✝¹ : MetricSpace P",
    "inst✝ : NormedAddTorsor V P",
    "s : Set P",
    "hs : Cospherical s",
    "p : Fin 3 → P",
    "hps : Set.range p ⊆ s",
    "hpi : Function.Injective p",
    "v : V",
    "hv : ∀ (i : Fin 3), ∃ r, p i = r • v +ᵥ p 0"
  ],
  "goal": "False"
} | 
	[
  134168
] | 
	[
  "Mathlib/Geometry/Euclidean/Sphere/Basic.lean"
] | 
| 
	{
  "context": [
    "V : Type u_1",
    "P : Type u_2",
    "inst✝³ : NormedAddCommGroup V",
    "inst✝² : InnerProductSpace ℝ V",
    "inst✝¹ : MetricSpace P",
    "inst✝ : NormedAddTorsor V P",
    "s : Set P",
    "p : Fin 3 → P",
    "hps : Set.range p ⊆ s",
    "hpi : Function.Injective p",
    "v : V",
    "hv : ∀ (i : Fin 3), ∃ r, p i = r • v +ᵥ p 0",
    "hv0 : v ≠ 0",
    "c : P",
    "r : ℝ",
    "hs : ∀ p ∈ s, dist p c = r"
  ],
  "goal": "False"
} | 
	[
  131596,
  133308
] | 
	[
  "Mathlib/Geometry/Euclidean/Sphere/Basic.lean"
] | 
| 
	{
  "context": [
    "V : Type u_1",
    "P : Type u_2",
    "inst✝³ : NormedAddCommGroup V",
    "inst✝² : InnerProductSpace ℝ V",
    "inst✝¹ : MetricSpace P",
    "inst✝ : NormedAddTorsor V P",
    "s : Set P",
    "p : Fin 3 → P",
    "hps : Set.range p ⊆ s",
    "hpi : Function.Injective p",
    "v : V",
    "hv : ∀ (i : Fin 3), ∃ r, p i = r • v +ᵥ p 0",
    "hv0 : v ≠ 0",
    "c : P",
    "r : ℝ",
    "hs : ∀ p ∈ s, dist p c = r",
    "hs' : ∀ (i : Fin 3), dist (p i) c = r"
  ],
  "goal": "False"
} | 
	[
  131596,
  133308
] | 
	[
  "Mathlib/Geometry/Euclidean/Sphere/Basic.lean"
] | 
| 
	{
  "context": [
    "V : Type u_1",
    "P : Type u_2",
    "inst✝³ : NormedAddCommGroup V",
    "inst✝² : InnerProductSpace ℝ V",
    "inst✝¹ : MetricSpace P",
    "inst✝ : NormedAddTorsor V P",
    "s : Set P",
    "p : Fin 3 → P",
    "hps : Set.range p ⊆ s",
    "hpi : Function.Injective p",
    "v : V",
    "hv0 : v ≠ 0",
    "c : P",
    "r : ℝ",
    "hs : ∀ p ∈ s, dist p c = r",
    "hs' : ∀ (i : Fin 3), dist (p i) c = r",
    "f : Fin 3 → ℝ",
    "hf : ∀ (i : Fin 3), p i = f i • v +ᵥ p 0",
    "hsd : ∀ (i : Fin 3), dist (f i • v +ᵥ p 0) c = r"
  ],
  "goal": "False"
} | 
	[
  1717,
  110053,
  115870,
  115877
] | 
	[
  "Mathlib/Geometry/Euclidean/Sphere/Basic.lean"
] | 
End of preview. 
	This dataset is used in the paper Assisting Mathematical Formalization with A Learning-based Premise Retriever. It contains data for training and evaluating a premise retriever for the Lean theorem prover.
The dataset is described in detail in the GitHub repository. It consists of proof states and corresponding premises from the Mathlib library. The data is designed to train a model to effectively retrieve relevant premises for a given proof state, assisting users in the mathematical formalization process. The dataset is available for download at this link.
- Downloads last month
- 45