Datasets:
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationError
Exception: ArrowInvalid
Message: Float value 2.1 was truncated converting to int64
Traceback: Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
writer.write_table(table)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
pa_table = table_cast(pa_table, self._schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
return cast_table_to_schema(table, schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2245, in cast_table_to_schema
arrays = [
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2246, in <listcomp>
cast_array_to_feature(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1795, in wrapper
return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1795, in <listcomp>
return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2102, in cast_array_to_feature
return array_cast(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1797, in wrapper
return func(array, *args, **kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1949, in array_cast
return array.cast(pa_type)
File "pyarrow/array.pxi", line 996, in pyarrow.lib.Array.cast
File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/compute.py", line 404, in cast
return call_function("cast", [arr], options, memory_pool)
File "pyarrow/_compute.pyx", line 590, in pyarrow._compute.call_function
File "pyarrow/_compute.pyx", line 385, in pyarrow._compute.Function.call
File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Float value 2.1 was truncated converting to int64
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1417, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1049, in convert_to_parquet
builder.download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
self._download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1897, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.exceptions.DatasetGenerationError: An error occurred while generating the datasetNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
pointid
string | lgbtqia2+_practicality
float64 | lgbtqia2+_inclusivity
float64 | lgbtqia2+_aesthetics
float64 | lgbtqia2+_accessibility
float64 | handicapped_practicality
float64 | handicapped_inclusivity
float64 | handicapped_aesthetics
float64 | handicapped_accessibility
float64 | elderly_female_practicality
float64 | elderly_female_inclusivity
float64 | elderly_female_aesthetics
float64 | elderly_female_accessibility
float64 | elderly_male_practicality
int64 | elderly_male_inclusivity
int64 | elderly_male_aesthetics
int64 | elderly_male_accessibility
int64 | young_male_practicality
int64 | young_male_inclusivity
int64 | young_male_aesthetics
int64 | young_male_accessibility
int64 | young_female_practicality
float64 | young_female_inclusivity
float64 | young_female_aesthetics
float64 | young_female_accessibility
float64 | group_practicality
float64 | group_inclusivity
float64 | group_aesthetics
float64 | group_accessibility
float64 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
i01
| 2.5
| 2.5
| 4
| 2
| 2
| 2
| 4
| 2
| 2.7
| 2.3
| 2.7
| 2.7
| 3
| 3
| 2
| 2
| 2
| 2
| 2
| 2
| 2.4
| 2.3
| 2.7
| 2.2
| 2.2
| 2.3
| 3.1
| 2.1
|
i02
| 3
| 2.5
| 2
| 3
| 3
| 2
| 2
| 3
| 2.7
| 2.3
| 2
| 3.7
| 2
| 2
| 2
| 3
| 2
| 2
| 2
| 3
| 2.4
| 2.1
| 2
| 3.2
| 2.5
| 2.5
| 2.2
| 2.5
|
i03
| 3.5
| 2
| 1.5
| 3
| 2
| 1
| 2
| 3
| 2.7
| 2.7
| 1.7
| 3
| 2
| 1
| 1
| 2
| 2
| 2
| 2
| 2
| 2.2
| 1.7
| 1.7
| 2.5
| 2.5
| 2.8
| 1.8
| 3
|
i04
| 2.5
| 3
| 3
| 3.5
| 1
| 2
| 1
| 1
| 2.7
| 3
| 2.3
| 3
| 2
| 3
| 2
| 3
| 3
| 3
| 3
| 2
| 2.2
| 2.8
| 2.1
| 2.3
| 3
| 3
| 3
| 4
|
i05
| 3.5
| 3
| 3.5
| 2.5
| 2
| 2
| 2
| 2
| 1.7
| 1.7
| 3.3
| 1.7
| 3
| 3
| 3
| 3
| 3
| 2
| 2
| 2
| 2.4
| 2.2
| 2.6
| 2.2
| 1.7
| 1.7
| 3.3
| 1.7
|
i06
| 3
| 2.5
| 2.5
| 2
| 4
| 2
| 1
| 4
| 2.7
| 2.7
| 1.7
| 2.3
| 3
| 2
| 3
| 2
| 3
| 2
| 2
| 2
| 3.2
| 2.2
| 1.9
| 2.6
| 3
| 2
| 2
| 1
|
i07
| 2.5
| 1.5
| 3
| 2
| 2
| 2
| 3
| 2
| 2.3
| 1.7
| 2
| 2.3
| 2
| 2
| 1
| 1
| 2
| 2
| 2
| 1
| 2.1
| 1.9
| 2
| 1.6
| 2
| 1
| 2
| 1
|
i08
| 2.5
| 1.5
| 1
| 1.5
| 3
| 2
| 1
| 2
| 1.3
| 1
| 1
| 1.7
| 1
| 1
| 1
| 1
| 2
| 1
| 1
| 1
| 1.8
| 1.3
| 1
| 1.4
| 1.9
| 1.3
| 1.3
| 1.4
|
i09
| 2
| 3
| 3.5
| 3.5
| 2
| 2
| 3
| 4
| 1.7
| 1.7
| 2
| 1.3
| 2
| 2
| 1
| 1
| 1
| 2
| 2
| 1
| 1.7
| 1.9
| 2
| 1.8
| 2
| 3
| 2
| 2
|
i10
| 3.5
| 2.5
| 2
| 2.5
| 3
| 2
| 1
| 3
| 2.7
| 2.7
| 2.3
| 2.7
| 3
| 2
| 2
| 1
| 3
| 3
| 2
| 2
| 2.9
| 2.4
| 1.8
| 2.2
| 2.8
| 2.5
| 1.5
| 2.5
|
i11
| 3
| 2
| 2
| 2
| 2
| 1
| 1
| 4
| 1.7
| 1
| 1.3
| 2.3
| 2
| 1
| 1
| 1
| 2
| 3
| 2
| 2
| 1.9
| 1.5
| 1.3
| 2.3
| 2.2
| 1.5
| 1
| 2.5
|
i12
| 2
| 1.5
| 2.5
| 1.5
| 2
| 2
| 2
| 3
| 1.7
| 1.7
| 1.7
| 2.3
| 2
| 2
| 2
| 2
| 1
| 1
| 1
| 1
| 1.7
| 1.7
| 1.7
| 2.1
| 1
| 1
| 1
| 1
|
i13
| 3
| 2.5
| 2
| 3
| 3
| 2
| 1
| 3
| 2
| 2.3
| 2.3
| 3
| 3
| 1
| 3
| 3
| 2
| 2
| 2
| 2
| 2.5
| 1.8
| 2.1
| 2.8
| 3
| 2
| 1.5
| 2.8
|
i14
| 3.5
| 4
| 4
| 3
| 2
| 3
| 2
| 2
| 3
| 2.3
| 2.7
| 2.3
| 2
| 3
| 2
| 3
| 3
| 3
| 4
| 3
| 2.5
| 2.8
| 2.7
| 2.6
| 3.2
| 2.5
| 2.8
| 2.4
|
i15
| 3.5
| 2
| 1.5
| 2
| 3
| 2
| 1
| 3
| 2.7
| 2.3
| 1.7
| 2.7
| 3
| 1
| 1
| 2
| 2
| 2
| 1
| 2
| 2.7
| 1.8
| 1.2
| 2.4
| 2.5
| 2.3
| 1.3
| 2.8
|
i16
| 3
| 2.5
| 3.5
| 3
| 1
| 1
| 1
| 1
| 3.3
| 3.3
| 2.7
| 3.7
| 3
| 1
| 3
| 1
| 4
| 4
| 3
| 3
| 2.8
| 2.3
| 2.4
| 2.2
| 2.6
| 2.3
| 1.6
| 2.1
|
i17
| 2
| 2
| 2.5
| 2
| 3
| 2
| 1
| 3
| 2
| 1.7
| 1.7
| 2.7
| 1
| 1
| 1
| 2
| 2
| 2
| 2
| 2
| 2
| 1.7
| 1.4
| 2.4
| 2
| 2
| 2
| 2
|
i18
| 3.5
| 3.5
| 2
| 3.5
| 1
| 1
| 1
| 1
| 3.7
| 3.3
| 3.7
| 3.3
| 4
| 2
| 3
| 2
| 4
| 4
| 3
| 3
| 3.2
| 2.6
| 2.7
| 2.3
| 2.2
| 2.5
| 1.5
| 2
|
i19
| 2.5
| 1.5
| 3
| 1.5
| 1
| 1
| 3
| 1
| 2.3
| 1.3
| 2.7
| 1
| 3
| 2
| 4
| 2
| 3
| 2
| 3
| 2
| 2.3
| 1.6
| 3.2
| 1.5
| 3
| 1
| 3
| 1
|
i20
| 3.5
| 1
| 1
| 1.5
| 4
| 2
| 1
| 4
| 2
| 2.3
| 1.3
| 2.7
| 3
| 2
| 2
| 3
| 2
| 1
| 1
| 1
| 2.8
| 1.8
| 1.3
| 2.7
| 2.6
| 2
| 1.9
| 2.6
|
i21
| 2.1
| 2.5
| 4
| 2
| 3
| 2
| 4
| 3
| 2.7
| 2.3
| 2.7
| 2.7
| 3
| 3
| 2
| 2
| 2
| 2.1
| 2
| 2
| 2.4
| 2.3
| 2.7
| 2.2
| 2
| 2.3
| 3.1
| 2.1
|
i22
| 2.3
| 2.5
| 2.5
| 3
| 3.5
| 2.2
| 2
| 3
| 2.7
| 2.3
| 2
| 3.7
| 2.5
| 2
| 2
| 3
| 2
| 2.5
| 2
| 3
| 2.4
| 2.1
| 2
| 3.2
| 2.2
| 2.5
| 2.2
| 2.5
|
i23
| 3.3
| 2
| 1.5
| 3
| 2.4
| 1
| 2
| 3
| 2.7
| 2.7
| 1.7
| 3.2
| 2
| 1.5
| 1
| 2
| 2
| 2
| 2
| 2.5
| 2.2
| 1.7
| 1.7
| 2.5
| 2.5
| 2.8
| 1.8
| 3
|
i24
| 2.9
| 3
| 3
| 3.5
| 1
| 2.3
| 1
| 1
| 2.9
| 3
| 2.3
| 3
| 2
| 3
| 2
| 3
| 3
| 3
| 3
| 2
| 2.2
| 2.8
| 2.3
| 2.3
| 3
| 3
| 3
| 4
|
i25
| 3.5
| 3.5
| 3.5
| 2.5
| 2
| 2
| 2.5
| 2
| 1.7
| 1.7
| 3.3
| 1.7
| 3
| 3
| 3
| 3
| 3.1
| 2
| 2
| 2
| 2.4
| 2.2
| 2.6
| 2.2
| 1.8
| 1.7
| 3.3
| 1.7
|
i26
| 3
| 2.7
| 2.5
| 2.6
| 4
| 2
| 1
| 4
| 2.7
| 2.2
| 1.7
| 2.3
| 3
| 2
| 3
| 2
| 3
| 2.3
| 2
| 2
| 3.5
| 2.2
| 1.9
| 2.6
| 3
| 2
| 2
| 1
|
i27
| 3.5
| 1.5
| 3
| 2.5
| 2
| 2
| 3
| 2
| 2.3
| 1.7
| 2
| 2.3
| 2
| 2
| 1
| 1
| 2
| 2
| 2
| 1
| 2.1
| 1.9
| 2
| 1.6
| 2
| 1
| 2
| 1
|
i28
| 2
| 1.5
| 1
| 1.5
| 3
| 2
| 1.5
| 2
| 1.3
| 1
| 1
| 1.7
| 1
| 1
| 1
| 1
| 2
| 1
| 1
| 1
| 1.8
| 1.5
| 1
| 1.4
| 1.9
| 1.3
| 1.3
| 1.4
|
i29
| 2.5
| 3
| 3.5
| 3.5
| 2
| 2
| 3
| 4
| 1.7
| 1.7
| 2
| 1.3
| 2
| 2
| 1
| 1
| 1
| 2
| 2
| 1
| 1.7
| 1.9
| 2
| 1.8
| 2
| 3
| 2
| 2.5
|
i30
| 2.5
| 2.5
| 2
| 2.5
| 3
| 2
| 1
| 3
| 2.7
| 2.7
| 2.3
| 2.7
| 3
| 2
| 2
| 1
| 2
| 3
| 2
| 2
| 2.9
| 2.4
| 1.8
| 2.2
| 2.5
| 2.5
| 1.5
| 2.5
|
i31
| 3
| 2
| 2.6
| 2
| 2
| 1
| 1
| 3.5
| 1.7
| 1
| 1.3
| 2.3
| 2
| 1
| 1
| 1.1
| 2
| 3
| 2
| 2
| 1.9
| 1.5
| 1.3
| 2.3
| 2.2
| 1.5
| 1
| 2.5
|
i32
| 2.5
| 1.8
| 2.5
| 1.5
| 2
| 2
| 2
| 3
| 1.7
| 1.7
| 1.7
| 2.3
| 2
| 2
| 2
| 2
| 1
| 1.1
| 1
| 1
| 1.7
| 1.7
| 1.7
| 2.1
| 1
| 1
| 1.3
| 1
|
i33
| 3
| 2.5
| 2
| 3
| 3.6
| 2
| 1
| 3
| 2
| 2.3
| 2.3
| 3
| 3
| 1
| 3
| 3
| 2
| 2
| 2
| 2
| 2.5
| 1.8
| 2.1
| 2.3
| 3
| 2
| 1.5
| 2.4
|
i34
| 3.5
| 3.5
| 4
| 3
| 2
| 3
| 2
| 2
| 3
| 2.8
| 2.7
| 2.3
| 2
| 3
| 2
| 3
| 3
| 3
| 4
| 3
| 2.5
| 2.8
| 2
| 2.6
| 3.2
| 2.5
| 2.8
| 2.4
|
i35
| 3
| 2
| 1.5
| 2
| 3
| 2
| 1
| 3
| 2.7
| 2.9
| 1.7
| 2.7
| 3
| 1
| 1
| 2
| 2
| 2
| 1
| 2
| 2.7
| 1.8
| 1.2
| 2.4
| 2.5
| 2.3
| 1.3
| 2.3
|
i36
| 3
| 2.5
| 3.5
| 2
| 1
| 1
| 1
| 1
| 3.3
| 3.3
| 2.7
| 3.7
| 3
| 1
| 3
| 1
| 4
| 4
| 3
| 3
| 2.8
| 2.3
| 2.8
| 2.2
| 2.6
| 2.3
| 1.6
| 2.1
|
i37
| 2
| 2
| 2.8
| 2
| 3
| 2
| 1
| 3
| 2
| 1.7
| 1.6
| 2.7
| 1
| 1
| 1
| 2
| 2
| 2
| 2
| 2
| 2
| 1.7
| 1.6
| 2.4
| 2
| 2
| 2
| 2
|
i38
| 3.5
| 3.5
| 2
| 3.4
| 1
| 1
| 1
| 1
| 3.7
| 3.5
| 3.7
| 3.3
| 4
| 2
| 3
| 2
| 4
| 4
| 3
| 3
| 3.2
| 2.6
| 2.5
| 2.3
| 2.2
| 2.5
| 1.5
| 2
|
i39
| 2.5
| 1.5
| 3
| 1.5
| 1
| 2
| 3
| 1
| 2.3
| 1.3
| 2.8
| 1
| 3
| 2
| 4
| 2
| 3
| 2
| 3
| 2
| 2.3
| 1.9
| 3.2
| 1.5
| 3
| 1
| 3
| 1
|
i40
| 3
| 1
| 1
| 2.5
| 4
| 2
| 1
| 4
| 2
| 2.3
| 1.6
| 2.7
| 3
| 2
| 2
| 3
| 2
| 1
| 1
| 1.5
| 2.8
| 1.8
| 1.3
| 2.7
| 2.6
| 2
| 1.9
| 2.6
|
i41
| 2.7
| 2.5
| 4
| 2
| 2
| 2
| 3.5
| 2
| 2.7
| 2.3
| 2.7
| 2.7
| 3
| 3
| 2
| 2
| 2
| 2
| 2
| 2
| 2.4
| 2.3
| 2.7
| 2.2
| 2.2
| 2.3
| 3.1
| 2.1
|
i42
| 3
| 2.5
| 2
| 3
| 3
| 2
| 2
| 3
| 2.7
| 2.3
| 2
| 3.7
| 2
| 2
| 2
| 3
| 2
| 2
| 2
| 3
| 2.4
| 2.1
| 2
| 3.2
| 2.5
| 2.5
| 2.2
| 2.5
|
i43
| 3
| 2
| 1.5
| 3
| 2
| 1
| 2
| 3
| 2.7
| 2.7
| 1.8
| 3
| 2
| 1
| 1
| 2
| 2
| 2
| 2
| 2
| 2.2
| 1.7
| 1.7
| 2.5
| 2.5
| 2
| 1.8
| 3
|
i44
| 3.5
| 3
| 3
| 3.5
| 1.5
| 2
| 1
| 1.5
| 2.7
| 3
| 2.3
| 2
| 2
| 3
| 2
| 3
| 3
| 3.5
| 3
| 2
| 2.4
| 2.8
| 2.1
| 2.3
| 3
| 3
| 3
| 3.8
|
i45
| 3.5
| 3
| 3.5
| 2.5
| 2.5
| 2
| 2
| 2
| 1.7
| 1.7
| 3.3
| 1.7
| 3
| 3
| 3.5
| 3
| 3
| 2
| 2
| 2
| 2.4
| 2.2
| 2.6
| 2.4
| 1.7
| 1.7
| 3.3
| 1.7
|
i46
| 3.5
| 2.5
| 2.5
| 2
| 4
| 2
| 1
| 4
| 2.7
| 2.7
| 1.7
| 2.6
| 3
| 2
| 3
| 2
| 3
| 2
| 2
| 2
| 3.4
| 2.2
| 1.9
| 2.6
| 3
| 2
| 2
| 1
|
i47
| 2.5
| 1.5
| 3
| 3
| 2
| 2
| 3
| 2
| 2.3
| 1.7
| 3
| 2.3
| 2
| 2
| 1
| 1
| 2
| 2
| 2
| 1
| 2.1
| 1.9
| 2
| 1.6
| 2
| 1
| 2
| 1
|
i48
| 2
| 1.5
| 1.5
| 1.5
| 3
| 2
| 1
| 2
| 1.3
| 1
| 1
| 1.7
| 1
| 1.5
| 1
| 1
| 2
| 1
| 1
| 1
| 1
| 1.3
| 1
| 1.4
| 2
| 1.3
| 1.3
| 1.4
|
i49
| 3
| 3
| 3.5
| 3.5
| 2
| 2
| 3
| 4
| 1.7
| 1.7
| 2
| 1.3
| 2
| 2
| 1
| 1
| 1
| 2
| 2
| 1.4
| 1.7
| 1.9
| 2
| 1.8
| 2
| 3
| 2
| 2
|
i50
| 3.5
| 2.5
| 2
| 3.5
| 3
| 2
| 1
| 3
| 2.7
| 2.7
| 2.3
| 3.7
| 3
| 2
| 2
| 1.5
| 3
| 3
| 2
| 2
| 2.9
| 2.4
| 2
| 2.2
| 2.8
| 2.5
| 1.5
| 2.5
|
i51
| 3
| 2
| 2
| 2
| 2
| 1
| 1
| 4
| 1.7
| 1
| 1.3
| 2.3
| 2
| 1
| 1
| 1
| 2
| 3
| 2
| 2
| 1.9
| 1.5
| 1.3
| 2.3
| 2.2
| 1.5
| 1
| 2.5
|
i52
| 2
| 1
| 2.5
| 1.5
| 2
| 2.5
| 2
| 3
| 1.7
| 1.7
| 2.7
| 2.3
| 2
| 2
| 2
| 2
| 1
| 1
| 1
| 1
| 1.7
| 1.7
| 1.7
| 2.1
| 2
| 1
| 1
| 1
|
i53
| 3
| 2.5
| 2.5
| 3
| 3
| 2
| 1
| 3.5
| 2.4
| 2.3
| 2.3
| 3
| 3
| 1
| 3
| 3
| 2
| 2
| 2
| 2
| 2.5
| 1.8
| 2.1
| 2.8
| 3
| 2
| 1.5
| 2.8
|
i54
| 3.5
| 3.5
| 4
| 3.5
| 2
| 3
| 2.5
| 2
| 3
| 2.3
| 2.7
| 2.5
| 2
| 3
| 2
| 3
| 3
| 3
| 4
| 3
| 2.5
| 2.8
| 2.7
| 2.6
| 3.2
| 2.5
| 2.8
| 2.4
|
i55
| 3.5
| 2
| 1.5
| 2
| 3
| 2
| 1
| 3
| 2.8
| 2.3
| 1.7
| 2.7
| 3
| 1
| 1
| 2
| 2
| 2
| 1
| 2
| 2.7
| 1.8
| 1.2
| 2.4
| 2.5
| 2.3
| 1.3
| 2.8
|
i56
| 3.5
| 3.5
| 3.5
| 3
| 1
| 1
| 1.5
| 1
| 3.3
| 3.8
| 2.7
| 3.7
| 3
| 1
| 3.3
| 1
| 4
| 4
| 3
| 3
| 2.8
| 2.3
| 2.4
| 2.2
| 2.6
| 2.3
| 1.6
| 2.1
|
i57
| 2
| 1.5
| 2.5
| 2
| 2
| 2
| 1
| 3
| 2
| 1.7
| 1.7
| 2.7
| 1
| 1
| 1
| 2
| 2
| 2
| 2
| 2
| 2
| 1.7
| 1.8
| 2.4
| 2
| 3
| 2
| 2
|
i58
| 4
| 3.5
| 2
| 3.5
| 1
| 1
| 1
| 1
| 3.7
| 3.3
| 3.7
| 3.3
| 4
| 2
| 3
| 2
| 4
| 3.5
| 3
| 3
| 3.2
| 2.6
| 3
| 2.3
| 0.2
| 3.5
| 1.5
| 2
|
i59
| 2.5
| 2
| 3
| 1
| 1
| 1
| 3
| 1
| 2.3
| 1.3
| 2
| 1
| 3
| 2
| 3
| 2
| 3
| 2
| 3
| 2.5
| 2.3
| 1.6
| 3.2
| 1.5
| 3
| 1
| 3
| 1
|
i60
| 3
| 1
| 1.5
| 2
| 4
| 2
| 1
| 3
| 2
| 2.3
| 1.3
| 2.7
| 2
| 2
| 2
| 3
| 2
| 1
| 1
| 1
| 2.8
| 2
| 1.3
| 2.7
| 2.6
| 2
| 2
| 2.6
|
- Paper (HF): https://huggingface.co/papers/2508.11708
- Repository: https://github.com/rsdmu/streetreview
StreetReview Dataset
Overview
StreetReview is a curated dataset designed to evaluate the inclusivity, accessibility, aesthetics, and practicality of urban streetscapes, particularly in a multicultural city context. Focused on Montréal, Canada, the dataset combines diverse demographic evaluations with rich metadata and street-view imagery. It aims to advance research in urban planning, public space design, and machine learning applications for creating inclusive and user-friendly urban environments.
Dataset Structure
The StreetReview dataset is organized as follows:
Root Directory
metadata.csv: Comprehensive metadata for each evaluation point.street_eval/: CSV files containing evaluation data for individual street sections.street_img/: Street-view images categorized by street and section.
Street Image Data
Images are stored in street_img/ and organized into folders by street and section, with three perspectives per section (_main, _head, _tail). Example structure:
street_img/
├── i01_cote_sainte_catherine_main/
│ ├── main_001.jpg
│ ├── main_002.jpg
│ ...
└── i02_rue_berri_main/
├── main_001.jpg
├── main_002.jpg
...
Street Evaluation Data
Evaluation data is stored in street_eval/ as CSV files named after their corresponding street section. Example:
street_eval/
├── i01_evaluations.csv
├── i02_evaluations.csv
...
Methodology
Participatory Evaluation Process
The dataset was created using a participatory approach to capture diverse urban experiences:
- Individual Evaluation: Participants rated 20 street on four criteria using a color-coded system.
- Group Evaluation: In focus groups, participants reassessed images collectively and refined their evaluations.
Data Collection
- Participants: 28 individuals contributed to criteria development; 12 participated in detailed evaluations.
- Evaluation Points: 60 points across 20 streets, with two images per point.
- Dataset Expansion: Up to 250 images per point, rotated for diversity.
Data Fields
Metadata
The metadata.csv file contains attributes such as:
| Field | Description |
|---|---|
point_id |
Unique identifier |
sidewalk_width |
Width of sidewalks |
greenery_presence |
Presence of greenery |
building_height |
Height of adjacent buildings |
| ... | ... |
Evaluations
Each CSV file in street_eval/ includes ratings from various demographic groups. Ratings are based on a 1-4 scale. For example, a score of 1 for accessibility means "not accessible," scores of 2 or 3 indicate "average accessibility," and a score of 4 represents "highest accessibility."
| Field | Description |
|---|---|
lgbtqia2+_accessibility |
Accessibility rating by LGBTQIA2+ |
elderly_male_practicality |
Practicality rating by elderly males |
group_inclusivity |
Inclusivity rating by groups of 3-5 diverse individuals |
| ... | ... |
Usage
Cloning the Repository
Clone the repository with:
git clone https://huggingface.co/datasets/rsdmu/streetreview
Example Code
import pandas as pd
from PIL import Image
import os
# Load metadata
metadata = pd.read_csv('metadata.csv')
# Load evaluation data
eval_data = pd.read_csv('street_eval/i01_evaluations.csv')
# Display an image
image_path = 'street_img/i01_cote_sainte_catherine_main/main_001.jpg'
image = Image.open(image_path)
image.show()
License
Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).
Citing StreetReview
@article{streetreview2025,
title = {Intersecting perspectives: A participatory street review framework for urban inclusivity},
journal = {Habitat International},
volume = {164},
pages = {103536},
year = {2025},
issn = {0197-3975},
doi = {10.1016/j.habitatint.2025.103536},
url = {https://www.sciencedirect.com/science/article/pii/S0197397525002528},
author = {Rashid Mushkani and Shin Koseki},
}
@misc{streetreview2025aibased,
title={Street Review: A Participatory AI-Based Framework for Assessing Streetscape Inclusivity},
author={Rashid Mushkani and Shin Koseki},
year={2025},
url={https://arxiv.org/abs/2508.11708},
}
Contributing
We welcome contributions! Please fork the repository, make changes, and submit a pull request.
Contact
For inquiries, contact:
- Email: Rashid Mushkani
- Website: Rashid Mushkani
- GitHub: RSDMU
© 2024 RSDMU. All rights reserved.
- Downloads last month
- 241
