|
|
--- |
|
|
annotations_creators: |
|
|
- expert-generated |
|
|
language: |
|
|
- en |
|
|
license: cc-by-4.0 |
|
|
pretty_name: IFCB Plankton Labeled (Cluster-Sorted) |
|
|
task_categories: |
|
|
- image-classification |
|
|
tags: |
|
|
- plankton |
|
|
- microscopy |
|
|
- ifcb |
|
|
- clustering |
|
|
- manual-sorting |
|
|
configs: |
|
|
- config_name: default |
|
|
data_files: |
|
|
- split: train |
|
|
path: data/train-* |
|
|
dataset_info: |
|
|
features: |
|
|
- name: image |
|
|
dtype: image |
|
|
- name: label |
|
|
dtype: |
|
|
class_label: |
|
|
names: |
|
|
'0': Akashiwo |
|
|
'1': Asterionellopsis |
|
|
'2': Centric |
|
|
'3': Ceratium |
|
|
'4': Chaetoceros |
|
|
'5': Ciliates |
|
|
'6': Detonula |
|
|
'7': Diatom_aggregate |
|
|
'8': Dictyocha |
|
|
'9': Dinophysis |
|
|
'10': Ditylum |
|
|
'11': Eucampia |
|
|
'12': Guinardia |
|
|
'13': Gymnodinium |
|
|
'14': Gyrodinium |
|
|
'15': Heterocapsa |
|
|
'16': Lauderia_Hemiaulus |
|
|
'17': Leptocylindrus |
|
|
'18': NanoPlankton |
|
|
'19': Pennate |
|
|
'20': Phaeocystis |
|
|
'21': Prorocentrum |
|
|
'22': Protoperidinium |
|
|
'23': Psuedo-nitzschia |
|
|
'24': Rhizosolenia_Proboscia |
|
|
'25': Skeletonema |
|
|
'26': Stephanopyxis |
|
|
'27': Thalassionema |
|
|
'28': Thalassiosira |
|
|
'29': Tintinnid |
|
|
'30': Unknown_detritus |
|
|
'31': Unknown_full_image |
|
|
'32': Unknown_phyto |
|
|
- name: group |
|
|
dtype: string |
|
|
- name: filename |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 286871203.36 |
|
|
num_examples: 7895 |
|
|
download_size: 291443502 |
|
|
dataset_size: 286871203.36 |
|
|
--- |
|
|
|
|
|
# IFCB Plankton Labeled (Cluster-Sorted) |
|
|
|
|
|
This dataset contains labeled images of phytoplankton collected with the **Planktivore Imaging System**. Images were preprocessed with a zero-padding and resized to the standard size used for `ViT_b_16` |
|
|
|
|
|
|
|
|
The dataset was originally constructed by clustering unlabeled ROI images using deep features from a ViT model. |
|
|
Clusters were then **saved locally** and **manually curated** into taxonomic labels and higher-order groups. |
|
|
|
|
|
## Dataset Summary |
|
|
|
|
|
- **Modality**: Images (PNG) |
|
|
- **Source**: Planktivore ROI captures |
|
|
- **Curation process**: |
|
|
1. Extracted deep features with a ViT backbone. |
|
|
2. Applied clustering (UMAP + HDBSCAN) to group morphologically similar images. |
|
|
3. Exported clusters to local folders. |
|
|
4. **Manually reviewed and sorted** each cluster into taxonomic categories (`label`) and broader groups (`group`). |
|
|
|
|
|
### Columns |
|
|
- `image`: The plankton ROI image. |
|
|
- `label`: Fine-grained label (taxon). |
|
|
- `group`: Higher-order grouping (e.g. diatoms, dinoflagellates, ciliates). |
|
|
|
|
|
### Example |
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
ds = load_dataset("patcdaniel/synchro-April2025-cluster-labeled-highMag") |
|
|
sample = ds["train"][0] |
|
|
sample["image"].show() |
|
|
print("Label:", ds["train"].features["label"].int2str(sample["label"])) |
|
|
print("Group:", ds["train"].features["group"].int2str(sample["group"])) |
|
|
``` |