metadata
license: mit
dataset_info:
features:
- name: id
dtype: string
- name: instruction
dtype: string
- name: question
dtype: string
- name: option1
dtype: string
- name: option2
dtype: string
- name: option3
dtype: string
- name: option4
dtype: string
- name: answer
dtype: string
- name: image
dtype: image
- name: audio
dtype: audio
splits:
- name: validation
num_bytes: 873288128
num_examples: 900
download_size: 819328629
dataset_size: 873288128
configs:
- config_name: default
data_files:
- split: validation
path: data/validation-*
Multi-TW: Traditional Chinese Language Learning Dataset
Dataset Description
Multi-TW is a Traditional Chinese language learning and assessment dataset containing 900 multiple-choice questions with multimedia content. This dataset is designed for evaluating multi-modal language models on Traditional Chinese comprehension tasks.
Dataset Structure
The dataset contains 900 samples in the validation split, suitable for benchmarking purposes.
Data Fields
id: Unique identifier for each questioninstruction: Task instructions in Chinesequestion: The question text in Chineseoption1: Multiple choice option Aoption2: Multiple choice option Boption3: Multiple choice option Coption4: Multiple choice option D (may be empty)answer: Correct answer (A, B, C, or D)image: PIL Image object (for visual questions)audio: Audio data with sampling rate (for audio questions)
Data Composition
- Total samples: 900
- Samples with images: 450
- Samples with audio: 450
- Answer distribution: A: 249, B: 261, C: 263, D: 127
- Question types: L (Listening): 660, R (Reading): 240
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("ntuai/multi-tw")
validation_data = dataset["validation"]
# Access a sample
sample = validation_data[0]
print(f"Question: {sample['question']}")
print(f"Options: {sample['option1']}, {sample['option2']}, {sample['option3']}")
print(f"Answer: {sample['answer']}")
# Check if sample has image or audio
if sample['image'] is not None:
# Process image
image = sample['image']
if sample['audio'] is not None:
# Process audio
audio_array = sample['audio']['array']
sampling_rate = sample['audio']['sampling_rate']
Dataset Statistics
The dataset covers various aspects of Chinese language learning:
- Visual comprehension: Questions requiring image understanding
- Audio comprehension: Questions requiring audio understanding
- Multiple choice format: 3-4 options per question
- Balanced distribution: Relatively even distribution across answer choices
License
MIT License
Citation
If you use this dataset in your research, please cite:
@dataset{multi_tw_2025,
title={Multi-TW: Benchmarking Multimodal Models on Traditional Chinese Question Answering in Taiwan},
author={Jui-Ming Yao, Bing-Cheng Xie, Sheng-Wei Peng, Hao-Yuan Chen, He-Rong Zheng, Bing-Jia Tan, Peter Shaojui Wang, and Shun-Feng Su},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/datasets/ntuai/multi-tw}
}