Dataset Viewer
Auto-converted to Parquet
Model
string
Size
string
Precision
string
GPU_Type
string
Num_GPUs
int64
Serving_Engine
string
Concurrency
int64
Tokens_per_sec
float64
TTFT_ms
float64
TPOT_ms
float64
Prompt_Tokens
int64
Output_Tokens
int64
Context_Window
int64
Quantization
string
Source_URL
string
Source_Notes
string
DeepSeek-R1-Distill-Qwen
7B
FP16
NVIDIA A100
1
vLLM
50
3,362.71
309.36
14.96
null
null
8,192
null
null
DeepSeek distill vLLM test on A100; concurrency=50
DeepSeek-R1-Distill-Qwen
14B
FP16
NVIDIA A100
1
vLLM
50
3,003.57
579.43
25.31
null
null
8,192
null
null
DeepSeek distill vLLM test on A100; concurrency=50
DeepSeek-R1-Distill-Qwen
32B
FP16
NVIDIA A100
1
vLLM
50
577.17
1,299.31
52.65
null
null
8,192
null
null
DeepSeek distill vLLM test on A100; concurrency=50
QwQ (Qwen preview)
32B
FP16
NVIDIA A100
1
vLLM
50
615.31
1,301.37
59.92
null
null
8,192
null
null
QwQ preview on vLLM; concurrency=50
Gemma-2
9B
FP16
NVIDIA A100
1
vLLM
50
1,868.44
405.48
71.98
null
null
8,192
null
null
Gemma-2 9B vLLM; concurrency=50
Gemma-2
27B
FP16
NVIDIA A100
1
vLLM
50
495.93
1,109.74
45.87
null
null
8,192
null
null
Gemma-2 27B vLLM; concurrency=50
DeepSeek-R1-Distill-Llama
8B
FP16
NVIDIA A100
1
vLLM
50
3,003.57
327.75
17.88
null
null
8,192
null
null
DeepSeek distill Llama-8B vLLM; concurrency=50
Llama-3.1
8B
FP8
NVIDIA B200
8
vLLM
null
128,794
null
null
null
null
null
null
null
MLPerf-style server aggregate; engine vLLM. [1] indicates 8xB200 hits ~160k tok/s.
Llama-3.1
8B
FP8
NVIDIA H200
8
vLLM
null
64,915
null
null
null
null
null
null
null
MLPerf-style server aggregate; engine vLLM. [1] indicates 8xH200 hits ~140k tok/s.
Llama-3.1
70B
BF16
Intel Gaudi 3
8
vLLM
null
21,264
null
null
null
null
null
null
null
Intel/third-party measurement; open weights
Llama-3.1
70B
BF16
NVIDIA H200
8
SGLang
10
null
7.292
0.042
4,096
256
null
null
[2]
VMware benchmark; E2E Latency 18ms. TPOT is extremely low.
Llama-3.1
70B
BF16
AMD MI300X
8
vLLM
null
null
null
null
null
null
null
null
[3]
1.8x higher throughput and 5.1x faster TTFT than TGI at 32 QPS.
Llama-3.1
70B
FP8
NVIDIA B200
8
vLLM
null
null
null
null
null
null
null
null
null
Target row; populate once B200 MLPerf v5.1+ data is available.
Llama-3.1
405B
FP8
NVIDIA H100
8
vLLM
null
291.5
null
null
null
null
null
null
null
Approx aggregate tok/s reported; low concurrency.
Llama-3.1
405B
FP8
AMD MI300X
8
vLLM (ROCm)
256
1,846
null
138.67
128
128
null
null
[4]
Per-token latency 17.75s E2E. (17750ms / 128 tokens = 138.67ms TPOT).
Qwen-2.5
7B
BF16
NVIDIA L40S
1
vLLM
32
null
null
null
null
null
null
AWQ
[5]
Target row. Source [5] inaccessible.
Qwen-2.5
14B
BF16
NVIDIA L40S
1
vLLM
32
null
null
null
null
null
null
AWQ
[5]
Target row. Source [5] inaccessible.
Qwen-2.5
32B
BF16
NVIDIA H100
1
vLLM
64
null
null
null
null
null
null
AWQ
[5]
Target row. Source [5] inaccessible.
Qwen-2.5
72B
BF16
NVIDIA H100
8
SGLang
128
null
null
null
null
null
null
null
[6]
Target row. Source [6] confirms vLLM/SGLang tests on 8xH100 but provides no hard numbers.
Qwen-3
14B
BF16
NVIDIA H200
1
vLLM
64
null
null
null
null
null
null
AWQ
null
Target row for 2025 posts with concurrency curves.
Qwen-3
32B
BF16
NVIDIA H200
4
vLLM
128
null
null
null
null
null
null
AWQ
null
Target row for 2025 posts with concurrency curves.
Qwen-3
72B
BF16
NVIDIA B200
8
SGLang
128
null
null
null
null
null
null
null
null
Target row; large-model serving.
Qwen-3
110B
BF16
AMD MI300X
8
vLLM (ROCm)
128
null
null
null
null
null
null
null
[7]
Target row; populate from ROCm case studies. Source [7] confirms support but gives no metrics.
Qwen-3
235B
BF16
Intel Gaudi 3
8
SGLang
64
null
null
null
null
null
null
null
[8]
Target row; [8] reference this but provide no data.
Qwen-3
235B
BF16
NVIDIA H200
4
SGLang
32
null
null
null
1,000
1,000
null
FP8
[9]
SGLang benchmark on H200 (proxy for B200). 45 tok/s *per user*. 1400 tok/s *total*.
DeepSeek-V3-Base
37B
BF16
NVIDIA H100
1
vLLM
32
null
null
null
null
null
null
null
[10]
Target row. [10] confirms 671B total / 37B active params.
DeepSeek-V3
37B
BF16
NVIDIA H100
4
SGLang
128
null
null
null
null
null
null
null
[11]
Target row; [11, 12] confirm SGLang support and optimizations.
DeepSeek-R1-Distill
70B
BF16
NVIDIA H200
8
vLLM
128
null
null
null
null
null
null
null
[13]
Target row. [13] lists 8-GPU (Latency) and 4-GPU (Throughput) optimized configs.
DeepSeek-R1-Distill
70B
BF16
AMD MI355X
8
vLLM (ROCm)
128
null
null
null
null
null
null
null
[7]
Target row; [7] confirms platform support, no metrics provided.
DeepSeek-R1-Distill
32B
BF16
Intel Gaudi 3
4
SGLang
64
null
null
null
null
null
null
null
null
Target row.
Gemma-3
12B
BF16
NVIDIA H100
1
vLLM
32
477.49
null
null
null
null
null
null
[14]
Low end of a 50-concurrency benchmark range (477-4193 tok/s).
Gemma-3
27B
BF16
NVIDIA H200
1
vLLM
64
null
null
null
null
null
null
null
[15]
Target row. [15] discusses benchmarking but provides no results.
Gemma-2
9B
BF16
NVIDIA L40S
1
SGLang
32
null
null
null
null
null
null
null
null
Target row.
Gemma-2
27B
BF16
Intel Gaudi 3
2
vLLM
32
null
null
null
null
null
null
null
[16]
Target row. [16] mentions Gaudi 2, not 3.
Phi-4
14B
BF16
NVIDIA H100
1
vLLM
32
260.01
null
null
null
null
null
null
null
Microsoft Phi-4 speed note; [17] confirms benchmarking at 16 RPS.
Phi-4-mini
3.8B
FP16
NVIDIA A100
1
vLLM
64
null
null
null
null
null
null
INT4/FP8
[18]
Target row. [18] notes tokenizer bugs impacting vLLM use.
Yi-1.5
9B
FP16
NVIDIA H100
1
vLLM
32
null
null
null
null
null
null
null
null
Target row.
Yi-1.5
34B
BF16
NVIDIA H200
2
SGLang
64
null
null
null
null
null
null
null
null
Target row.
Mixtral
8x7B MoE
BF16
NVIDIA H100
1
vLLM
32
null
null
null
null
null
null
null
[19]
Target row. [19] confirms vLLM/TP/PP benchmarks exist. 2 active experts.
Mixtral
8x22B MoE
BF16
NVIDIA H200
8
SGLang
128
null
null
null
null
null
null
null
[20]
Target row. [20] notes MoE complexity, no hard numbers.
DBRX
132B
BF16
NVIDIA H100
8
vLLM
64
null
null
null
null
null
null
null
[21]
Target row. 4 active experts. [21] notes 2x+ throughput over 70B dense model at batch > 32.
DBRX
132B
BF16
AMD MI300X
8
vLLM (ROCm)
64
null
null
null
null
null
null
null
null
Target row.
Llama-3.2
3B
BF16
NVIDIA L40S
1
vLLM
32
95
null
null
128
2,048
131,072
null
null
Single-GPU L40S example.
Hermes-3 (Llama-3.2)
3B
BF16
NVIDIA RTX 4090
1
vLLM
null
60.69
null
null
null
null
null
null
[22]
SGLang vs vLLM benchmark. 4090 is proxy for L40S.
Hermes-3 (Llama-3.2)
3B
BF16
NVIDIA RTX 4090
1
SGLang
null
118.34
null
null
null
null
null
null
[22]
SGLang is ~2x faster than vLLM on this small model.
Llama-3.1
8B
BF16
Intel Gaudi 3
1
SGLang
32
null
null
null
null
null
null
null
[23]
Target row. [23, 24] confirm SGLang support on Gaudi 3.
Llama-3.1
8B
BF16
Intel Gaudi 3
1
vLLM
1,000
9,579.96
null
null
null
null
null
null
[25]
Added row. Total throughput at 1000 concurrent requests (27.7 QPS).
Llama-3.1
8B
BF16
AMD MI300X
1
vLLM (ROCm)
null
18,752
null
null
null
null
null
null
[1]
Added row. Single-GPU benchmark. Compare to H200 (25k tok/s).
Llama-3.1
70B
BF16
NVIDIA L40S
8
vLLM
64
null
null
null
null
null
null
null
[26]
Target row. [26] notes L40S.8x used for DBRX (132B), proving 70B is feasible.
Llama-3.1
70B
BF16
Intel Gaudi 3
8
SGLang
128
null
null
null
null
null
null
null
[27]
Target row. [27] confirms vLLM FP8 calibration for 70B on Gaudi.
Llama-3.1
70B
BF16
Intel Gaudi 3
4
vLLM
1,000
9,072.96
null
null
null
null
null
null
[25]
Added row. Normalized throughput (per-param basis) at 1000 requests.
Mistral
7B
BF16
Intel Gaudi 3
1
vLLM
1,000
10,382.47
null
38.54
null
null
null
null
[25]
Added row. 23.51 QPS. TPOT is ms per token.
Qwen-3-Math
72B
BF16
NVIDIA H200
8
vLLM
64
null
null
null
null
null
null
null
null
Target row.
Qwen-2.5-Coder
32B
BF16
NVIDIA H100
2
SGLang
64
null
null
null
null
null
null
null
[28]
Target row. [28] discusses training, not inference.
Phi-4
14B
BF16
Intel Gaudi 3
1
vLLM
32
null
null
null
null
null
null
null
[29]
Target row. [29] confirms FP8 support on Gaudi.
Gemma-2
27B
BF16
AMD MI355X
4
vLLM (ROCm)
64
null
null
null
null
null
null
null
[30]
Target row. [30] confirms "Paiton" optimizations for Gemma 2 27B on AMD.
Yi-1.5
34B
BF16
Intel Gaudi 3
4
SGLang
64
null
null
null
null
null
null
null
null
Target row.
Qwen-3
110B
BF16
NVIDIA B200
8
vLLM
128
null
null
null
null
null
null
null
null
Target row.
Qwen-3
235B
BF16
NVIDIA B200
8
SGLang
128
null
null
null
null
null
null
null
null
Target row.
Llama-3.1-8B-Instruct
8B
BF16
NVIDIA H100
1
vLLM (v0)
5
588.62
318
null
null
null
null
null
[31]
vLLM v0.9.0 benchmark; avg latency 16.98s
Llama-3.1-8B-Instruct
8B
BF16
NVIDIA H100
1
vLLM (v0)
50
2,742.96
357
null
null
null
null
null
[31]
vLLM v0.9.0 benchmark; avg latency 26.18s
Llama-3.1-8B-Instruct
8B
BF16
NVIDIA H100
1
vLLM (v0)
100
2,744.1
415
null
null
null
null
null
null
vLLM v0.9.0 benchmark; avg latency 26.16s
Llama-3.1-8B-Instruct
8B
BF16
NVIDIA H100
1
vLLM (v1)
5
634.87
276
null
null
null
null
null
[31]
vLLM v0.9.0 (V1 sched) benchmark; avg latency 15.75s
Llama-3.1-8B-Instruct
8B
BF16
NVIDIA H100
1
vLLM (v1)
50
3,141.16
348
null
null
null
null
null
[31]
vLLM v0.9.0 (V1 sched) benchmark; avg latency 22.80s
Llama-3.1-8B-Instruct
8B
BF16
NVIDIA H100
1
vLLM (v1)
100
3,036.62
373
null
null
null
null
null
[31]
vLLM v0.9.0 (V1 sched) benchmark; avg latency 23.59s
Llama-3.1-8B-Instruct
8B
BF16
NVIDIA H100
1
SGLang
5
666.54
136
null
null
null
null
null
[31]
SGLang v0.4.9 benchmark; avg latency 15.00s. Note 2x better TTFT vs vLLM.
Llama-3.1-8B-Instruct
8B
BF16
NVIDIA H100
1
SGLang
50
3,077.68
258
null
null
null
null
null
[31]
SGLang v0.4.9 benchmark; avg latency 23.38s.
Llama-3.1-8B-Instruct
8B
BF16
NVIDIA H100
1
SGLang
100
3,088.08
254
null
null
null
null
null
[31]
SGLang v0.4.9 benchmark; avg latency 23.29s. Note stable TTFT.
Llama-3.1
70B
FP8
NVIDIA H100
2
vLLM
1
35
null
null
null
null
null
null
[32]
Sequential requests.
Llama-3.1
70B
FP8
NVIDIA H100
2
SGLang
1
38
null
null
null
null
null
null
[32]
Sequential requests.
Llama-3.1
70B
FP8
NVIDIA H100
2
vLLM
null
null
null
null
null
null
null
null
[32]
Concurrent requests; performance *collapses* by ~50%.
Llama-3.1
70B
FP8
NVIDIA H100
2
SGLang
null
null
null
null
null
null
null
null
[32]
Concurrent requests; performance is *stable*.
Llama-3.1
8B
BF16
NVIDIA H100
1
vLLM
1
80
null
null
null
null
null
null
[32]
Sequential requests.
Llama-3.1
8B
BF16
NVIDIA H100
1
SGLang
1
91
null
null
null
null
null
null
[32]
Sequential requests.
Llama-3.1
8B
BF16
NVIDIA H100
1
vLLM
null
null
null
null
null
null
null
null
[32]
Concurrent requests; performance *collapses* by >50%.
Llama-3.1
8B
BF16
NVIDIA H100
1
SGLang
null
null
null
null
null
null
null
null
[32]
Concurrent requests; performance is *stable*.
Qwen-1.5B
1.5B
null
null
1
vLLM
null
98.27
null
null
null
null
null
null
null
Latency 0.13s; precision and hardware not specified.
Qwen-1.5B
1.5B
null
null
1
SGLang
null
210.48
null
null
null
null
null
null
null
Latency 0.58s; precision and hardware not specified.
Hermes-3
null
null
null
1
vLLM
null
60.69
null
null
null
null
null
null
null
Latency 0.21s; model size, precision and hardware not specified.
Hermes-3
null
null
null
1
SGLang
null
118.34
null
null
null
null
null
null
null
Latency 1.03s; model size, precision and hardware not specified.

Dataset Card: llm-perfdata

Dataset Description

This dataset curates throughput and latency benchmarks for popular large language models across hardware targets. Each row represents an observed configuration—model, precision, serving engine, and load profile—paired with sources that document how the measurement was collected. The goal is to keep a transparent, reproducible ledger that helps compare serving trade-offs without digging through scattered notebooks.

Provenance & Caveats

All entries are derived solely from online, publicly available sources. Because performance numbers depend on external documentation, there may be gaps, inconsistencies, or occasional inaccuracies. Expect the dataset to drift out of date as serving stacks and software releases evolve; refresh measurements regularly when citing results.

Data Schema

The dataset contains the following columns:

  • Model — published model identifier (e.g., DeepSeek-R1-Distill-Qwen).
  • Size — parameter scale shorthand such as 7B or 32B.
  • Precision — numeric precision used during serving (FP16, BF16, INT4, etc.).
  • GPU_Type — accelerator family (for example NVIDIA A100).
  • Num_GPUs — integer count of GPUs participating in the run.
  • Serving_Engine — runtime layer (vLLM, TensorRT-LLM, custom stacks).
  • Concurrency — concurrent request count exercised in the benchmark.
  • Tokens_per_sec — aggregate output throughput.
  • TTFT_ms — time-to-first-token in milliseconds.
  • TPOT_ms — tail period of token generation in milliseconds.
  • Prompt_Tokens / Output_Tokens — tokens in the input and generated output.
  • Context_Window — maximum supported tokens for the configuration.
  • Quantization — applied quantization strategy, if any.
  • Source_URL — public link to the benchmark report or raw logs.
  • Source_Notes — short free-text context, hardware topology, or caveats.

Leave optional numeric metrics blank when a source does not provide them and describe missing context in Source_Notes.

Usage

from datasets import load_dataset

dataset = load_dataset("metrum-ai/llm-perfdata")
print(dataset)

# Access the data
for example in dataset['train']:
    print(f"Model: {example['Model']}")
    print(f"Throughput: {example['Tokens_per_sec']} tokens/sec")
    print(f"Source: {example['Source_URL']}")

Or load directly as a pandas DataFrame:

import pandas as pd
from datasets import load_dataset

dataset = load_dataset("metrum-ai/llm-perfdata")
df = dataset['train'].to_pandas()

# Filter by model and precision
filtered = df[(df["Model"] == "DeepSeek-R1-Distill-Qwen") & (df["Precision"] == "FP16")]

Analysts typically pivot on Serving_Engine and Concurrency to compare throughput scaling. Cite the Source_URL when referencing numbers externally.

Attribution

If you use this dataset, you must provide attribution to Metrum AI. Please cite this dataset using the citation format provided below.

License

This dataset is released under the MIT License.

MIT License

Copyright (c) 2025 Metrum AI

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and/or data and associated documentation files (the "Software and/or Data"), to deal in the Software and/or Data without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software and/or Data, and to permit persons to whom the Software and/or Data is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software and/or Data.

THE SOFTWARE AND/OR DATA IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE AND/OR DATA OR THE USE OR OTHER DEALINGS IN THE SOFTWARE AND/OR DATA.

No Warranty and Limitation of Liability

THIS DATASET IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. The data is compiled from publicly available sources and may contain errors, inaccuracies, or become outdated. Metrum AI makes no representations or warranties regarding the accuracy, completeness, reliability, or suitability of this dataset for any purpose.

IN NO EVENT SHALL METRUM AI BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with this dataset or the use or other dealings in this dataset. This includes, without limitation, direct, indirect, incidental, special, consequential, or punitive damages, or any loss of profits, revenues, data, use, goodwill, or other intangible losses.

Use of this dataset is at your own risk.

Additional Disclaimers

No Endorsement: The inclusion of any model, hardware, software, or service in this dataset does not constitute an endorsement, recommendation, or approval by Metrum AI. All trademarks, product names, and company names are the property of their respective owners.

Third-Party Sources: This dataset aggregates data from publicly available third-party sources. Metrum AI does not control, verify, or guarantee the accuracy of information from these sources. Users should independently verify any information before relying on it.

No Professional Advice: This dataset is provided for informational and research purposes only. It does not constitute professional, technical, or business advice. Users should consult with qualified professionals for decisions based on this data.

Data Completeness: This dataset may not include all available performance benchmarks. The absence of data for a particular model, hardware configuration, or metric does not imply that such data does not exist or is not relevant.

No Guarantee of Availability: Metrum AI does not guarantee that this dataset will be available at all times or that it will be updated regularly. The dataset may be modified, discontinued, or removed without notice.

Forward-Looking Statements: Any performance metrics or benchmarks in this dataset reflect historical or current conditions and may not be indicative of future performance.

User Responsibility: Users are solely responsible for their use of this dataset, including compliance with applicable laws, regulations, and third-party rights. Users should conduct their own due diligence before making any decisions based on this data.

Citation

@dataset{llm_perfdata,
  title = {LLM Perfdata},
  author = {Metrum AI},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/metrum-ai/llm-perfdata}
}
Downloads last month
27