The dataset viewer is not available for this split.
Error code: JobManagerCrashedError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Vector Database Dataset
Generated embeddings dataset for vector database training and evaluation with multiple format support.
Dataset Summary
This dataset contains 500,000 text samples with high-quality vector embeddings generated using Qwen/Qwen3-Embedding-8B from the wikimedia/wikipedia dataset. The dataset is designed for vector database training, similarity search, and retrieval tasks.
Dataset Structure
- Base dataset: 500,000 samples with embeddings
- Query dataset: 100,000 query samples
- Embedding dimension: 4096
Supported Tasks
- Feature Extraction: Use embeddings directly for downstream tasks
- Similarity Search: Find similar documents using vector similarity
- Text Retrieval: Build search and retrieval systems
- Vector Database Training: Train and evaluate vector database systems
Languages
- English (primary)
Repository Structure
π parquet/
Contains parquet files compatible with HuggingFace dataset viewer:
base.parquet- Main dataset with text and embeddingsqueries.parquet- Query subset for evaluation
π fvecs/
Contains .fvecs files for DiskANN compatibility:
base.fvecs- Base vectors in fvecs formatqueries.fvecs- Query vectors in fvecs format
π fbin/
Contains .fbin files for DiskANN compatibility:
base.fbin- Base vectors in fbin formatqueries.fbin- Query vectors in fbin format
π diskann/
Contains pre-built DiskANN index files:
gt_*.fbin- Ground truth fileindex_*.index- DiskANN index files- Additional index metadata files
Usage
Loading with HuggingFace Datasets
from datasets import load_dataset
# Load the dataset (uses parquet files automatically)
dataset = load_dataset("maknee/wikipedia_qwen_8b")
base_data = dataset['base']
query_data = dataset['queries']
# Access embeddings and texts
import numpy as np
embeddings = np.array(base_data['embedding'])
texts = base_data['text']
Using .fvecs files with DiskANN
# Download and use .fvecs files
from huggingface_hub import hf_hub_download
base_fvecs = hf_hub_download(repo_id="{repo_name}", filename="fvecs/base.fvecs")
query_fvecs = hf_hub_download(repo_id="{repo_name}", filename="fvecs/queries.fvecs")
# Load with your DiskANN pipeline
# (Implementation depends on your DiskANN setup)
Using .fbin files with DiskANN
# Download and use .fbin files
from huggingface_hub import hf_hub_download
base_fbin = hf_hub_download(repo_id="{repo_name}", filename="fbin/base.fbin")
query_fbin = hf_hub_download(repo_id="{repo_name}", filename="fbin/queries.fbin")
# Load with DiskANN
# .fbin format is the native DiskANN format with header: [num_vectors, dimensions] followed by vectors
Using Pre-built DiskANN Index
# Download index files
from huggingface_hub import hf_hub_download
import os
# Create local directory for index
os.makedirs("diskann_index", exist_ok=True)
# Download all index files (adjust filenames as needed)
index_files = ["gt_100.fbin", "index_64_100_256_disk.index"] # Example names
for filename in index_files:
hf_hub_download(
repo_id="{repo_name}",
filename=f"diskann/{filename}",
local_dir="diskann_index"
)
# Use with DiskANN search
# (Implementation depends on your DiskANN setup)
File Formats
- Parquet: Efficient columnar format, compatible with pandas/HuggingFace
- fvecs: Binary format for vector data, used by many vector search libraries
- fbin: Native DiskANN binary format with header containing metadata
- DiskANN: Optimized index format for fast similarity search
Dataset Information
- Created: using Qwen/Qwen3-Embedding-8B embedding model
- Source: wikimedia/wikipedia
- Size: 500,000 base samples, 100,000 query samples
- Dimension: 4096 embedding vectors
- Formats: Parquet, FVECS, FBIN, DiskANN indices
Citation
If you use this dataset in your research, please cite:
@dataset{huggingface_embeddings_maknee_wikipedia_qwen_8b,
title={Vector Database Embeddings Dataset},
author={Henry Zhu},
year={2025},
url={https://huggingface.co/datasets/maknee/wikipedia_qwen_8b}
}
License
This dataset is released under the MIT License. See the LICENSE file for details.
Generated with the DiskANN embedding generation tool.
- Downloads last month
- 235