Datasets:
date
stringdate 2016-07-01 00:00:00
2018-06-26 19:00:00
| HUFL
float64 -22.71
23.6
| HULL
float64 -4.76
10.1
| MUFL
float64 -25.09
17.3
| MULL
float64 -5.93
7.75
| LUFL
float64 -1.19
8.5
| LULL
float64 -1.37
3.05
| OT
float64 -4.08
46
|
|---|---|---|---|---|---|---|---|
2016-07-01 00:00:00
| 5.827
| 2.009
| 1.599
| 0.462
| 4.203
| 1.34
| 30.531
|
2016-07-01 01:00:00
| 5.693
| 2.076
| 1.492
| 0.426
| 4.142
| 1.371
| 27.787001
|
2016-07-01 02:00:00
| 5.157
| 1.741
| 1.279
| 0.355
| 3.777
| 1.218
| 27.787001
|
2016-07-01 03:00:00
| 5.09
| 1.942
| 1.279
| 0.391
| 3.807
| 1.279
| 25.044001
|
2016-07-01 04:00:00
| 5.358
| 1.942
| 1.492
| 0.462
| 3.868
| 1.279
| 21.948
|
2016-07-01 05:00:00
| 5.626
| 2.143
| 1.528
| 0.533
| 4.051
| 1.371
| 21.174
|
2016-07-01 06:00:00
| 7.167
| 2.947
| 2.132
| 0.782
| 5.026
| 1.858
| 22.792
|
2016-07-01 07:00:00
| 7.435
| 3.282
| 2.31
| 1.031
| 5.087
| 2.224
| 23.143999
|
2016-07-01 08:00:00
| 5.559
| 3.014
| 2.452
| 1.173
| 2.955
| 1.432
| 21.667
|
2016-07-01 09:00:00
| 4.555
| 2.545
| 1.919
| 0.817
| 2.68
| 1.371
| 17.445999
|
2016-07-01 10:00:00
| 4.957
| 2.545
| 1.99
| 0.853
| 2.955
| 1.492
| 19.979
|
2016-07-01 11:00:00
| 5.76
| 2.545
| 2.203
| 0.853
| 3.442
| 1.492
| 20.118999
|
2016-07-01 12:00:00
| 4.689
| 2.545
| 1.812
| 0.853
| 2.833
| 1.523
| 19.205
|
2016-07-01 13:00:00
| 4.689
| 2.679
| 1.777
| 1.244
| 3.107
| 1.614
| 18.572001
|
2016-07-01 14:00:00
| 5.09
| 2.947
| 2.452
| 1.35
| 2.559
| 1.432
| 19.556
|
2016-07-01 15:00:00
| 5.09
| 3.148
| 2.487
| 1.35
| 2.589
| 1.523
| 17.305
|
2016-07-01 16:00:00
| 4.22
| 2.411
| 1.706
| 0.782
| 2.619
| 1.492
| 19.486
|
2016-07-01 17:00:00
| 4.756
| 2.344
| 1.635
| 0.711
| 3.076
| 1.492
| 19.134001
|
2016-07-01 18:00:00
| 5.626
| 2.88
| 2.523
| 1.208
| 3.076
| 1.492
| 20.681999
|
2016-07-01 19:00:00
| 5.492
| 3.014
| 2.452
| 1.208
| 3.015
| 1.553
| 18.712
|
2016-07-01 20:00:00
| 5.358
| 3.014
| 2.452
| 1.208
| 2.863
| 1.523
| 17.868
|
2016-07-01 21:00:00
| 5.09
| 2.947
| 2.381
| 1.208
| 2.68
| 1.523
| 18.009001
|
2016-07-01 22:00:00
| 4.823
| 2.947
| 2.203
| 1.173
| 2.619
| 1.523
| 18.009001
|
2016-07-01 23:00:00
| 4.622
| 2.88
| 2.132
| 1.137
| 2.467
| 1.492
| 19.768
|
2016-07-02 00:00:00
| 5.224
| 3.081
| 2.701
| 1.315
| 2.437
| 1.523
| 21.104
|
2016-07-02 01:00:00
| 5.157
| 3.014
| 2.878
| 1.35
| 2.345
| 1.432
| 19.697001
|
2016-07-02 02:00:00
| 5.157
| 3.148
| 2.878
| 1.492
| 2.284
| 1.432
| 20.049
|
2016-07-02 03:00:00
| 5.157
| 3.081
| 2.914
| 1.492
| 2.193
| 1.401
| 20.752001
|
2016-07-02 04:00:00
| 4.555
| 3.081
| 2.452
| 1.492
| 2.193
| 1.401
| 21.385
|
2016-07-02 05:00:00
| 5.425
| 3.282
| 3.092
| 1.706
| 2.437
| 1.462
| 22.23
|
2016-07-02 06:00:00
| 5.492
| 3.282
| 2.523
| 1.492
| 2.985
| 1.462
| 20.26
|
2016-07-02 07:00:00
| 5.626
| 3.215
| 2.487
| 1.492
| 3.076
| 1.523
| 21.104
|
2016-07-02 08:00:00
| 5.559
| 3.282
| 2.594
| 1.67
| 2.924
| 1.523
| 20.612
|
2016-07-02 09:00:00
| 5.224
| 3.215
| 2.559
| 1.564
| 2.68
| 1.462
| 18.361
|
2016-07-02 10:00:00
| 9.913
| 4.957
| 6.645
| 3.305
| 3.046
| 1.553
| 20.962999
|
2016-07-02 11:00:00
| 11.788
| 5.425
| 8.173
| 2.523
| 3.686
| 1.675
| 19.416
|
2016-07-02 12:00:00
| 9.645
| 4.957
| 6.752
| 2.132
| 3.107
| 1.828
| 20.823
|
2016-07-02 13:00:00
| 10.382
| 5.76
| 7.462
| 2.559
| 2.985
| 1.767
| 20.190001
|
2016-07-02 14:00:00
| 8.774
| 4.689
| 6.112
| 2.025
| 2.894
| 1.919
| 21.315001
|
2016-07-02 15:00:00
| 10.449
| 5.157
| 6.965
| 2.452
| 2.772
| 1.736
| 22.018999
|
2016-07-02 16:00:00
| 9.846
| 4.823
| 7.036
| 2.665
| 2.894
| 1.767
| 20.681999
|
2016-07-02 17:00:00
| 9.913
| 4.823
| 6.894
| 2.416
| 3.229
| 1.736
| 25.466
|
2016-07-02 18:00:00
| 10.65
| 4.689
| 6.929
| 2.452
| 3.381
| 1.797
| 25.888
|
2016-07-02 19:00:00
| 10.114
| 4.354
| 6.645
| 1.812
| 3.107
| 1.736
| 27.857
|
2016-07-02 20:00:00
| 9.98
| 4.153
| 6.574
| 1.954
| 3.411
| 1.767
| 27.295
|
2016-07-02 21:00:00
| 9.31
| 4.22
| 6.005
| 2.132
| 3.229
| 1.858
| 22.23
|
2016-07-02 22:00:00
| 9.444
| 4.622
| 6.965
| 2.168
| 2.955
| 1.858
| 21.948
|
2016-07-02 23:00:00
| 9.444
| 4.287
| 6.823
| 2.559
| 2.589
| 1.736
| 27.295
|
2016-07-03 00:00:00
| 10.382
| 5.425
| 7.604
| 2.31
| 2.955
| 1.675
| 29.334999
|
2016-07-03 01:00:00
| 9.779
| 5.224
| 6.716
| 2.843
| 2.65
| 1.675
| 26.028
|
2016-07-03 02:00:00
| 10.382
| 4.689
| 7.32
| 2.203
| 2.985
| 1.858
| 24.34
|
2016-07-03 03:00:00
| 9.779
| 4.153
| 6.823
| 1.99
| 2.528
| 1.675
| 26.450001
|
2016-07-03 04:00:00
| 10.717
| 4.756
| 7.356
| 2.807
| 2.65
| 1.797
| 25.958
|
2016-07-03 05:00:00
| 10.315
| 4.689
| 7.391
| 2.452
| 2.924
| 1.858
| 24.059
|
2016-07-03 06:00:00
| 12.592
| 5.224
| 8.671
| 2.203
| 3.716
| 1.949
| 25.325001
|
2016-07-03 07:00:00
| 11.119
| 4.622
| 7.889
| 2.843
| 3.625
| 1.919
| 23.636999
|
2016-07-03 08:00:00
| 10.65
| 4.421
| 7.036
| 2.025
| 3.594
| 1.919
| 26.379999
|
2016-07-03 09:00:00
| 10.047
| 4.22
| 6.432
| 1.67
| 3.686
| 1.949
| 27.365
|
2016-07-03 10:00:00
| 11.721
| 5.09
| 7.889
| 2.559
| 3.564
| 1.858
| 28.068001
|
2016-07-03 11:00:00
| 12.123
| 5.358
| 8.066
| 2.487
| 4.082
| 1.919
| 29.475
|
2016-07-03 12:00:00
| 9.98
| 5.023
| 6.858
| 2.559
| 3.29
| 1.858
| 26.802
|
2016-07-03 13:00:00
| 9.243
| 4.957
| 6.29
| 2.63
| 3.137
| 1.888
| 29.968
|
2016-07-03 14:00:00
| 10.181
| 5.425
| 7.178
| 3.02
| 3.076
| 1.888
| 30.389999
|
2016-07-03 15:00:00
| 9.645
| 5.425
| 7.107
| 2.665
| 3.015
| 1.828
| 31.164
|
2016-07-03 16:00:00
| 9.779
| 4.89
| 6.503
| 2.985
| 3.076
| 2.01
| 29.757
|
2016-07-03 17:00:00
| 11.119
| 5.157
| 7.32
| 2.914
| 3.807
| 1.98
| 32.289001
|
2016-07-03 18:00:00
| 11.052
| 4.957
| 7.391
| 2.523
| 3.686
| 1.98
| 31.938
|
2016-07-03 19:00:00
| 10.784
| 4.89
| 7.214
| 2.487
| 3.594
| 1.888
| 28.561001
|
2016-07-03 20:00:00
| 11.186
| 4.89
| 7.178
| 2.345
| 3.96
| 1.919
| 21.525999
|
2016-07-03 21:00:00
| 10.449
| 4.89
| 6.61
| 2.31
| 3.807
| 2.041
| 22.23
|
2016-07-03 22:00:00
| 9.578
| 5.76
| 6.787
| 3.127
| 3.259
| 1.888
| 19.416
|
2016-07-03 23:00:00
| 9.31
| 5.76
| 6.61
| 3.056
| 3.168
| 1.888
| 18.572001
|
2016-07-04 00:00:00
| 9.913
| 5.894
| 6.254
| 2.63
| 3.015
| 1.858
| 21.667
|
2016-07-04 01:00:00
| 8.975
| 4.957
| 6.29
| 2.665
| 2.863
| 1.828
| 25.535999
|
2016-07-04 02:00:00
| 8.64
| 4.823
| 6.148
| 2.594
| 2.924
| 1.828
| 27.857
|
2016-07-04 03:00:00
| 9.176
| 5.492
| 5.579
| 2.381
| 2.863
| 1.858
| 27.927999
|
2016-07-04 04:00:00
| 9.109
| 4.823
| 5.65
| 2.523
| 2.772
| 1.797
| 24.621
|
2016-07-04 05:00:00
| 9.846
| 5.559
| 5.97
| 2.949
| 3.107
| 1.888
| 23.848
|
2016-07-04 06:00:00
| 11.588
| 5.425
| 7.391
| 2.807
| 3.807
| 1.98
| 23.073999
|
2016-07-04 07:00:00
| 11.788
| 6.095
| 7.214
| 2.985
| 3.899
| 2.041
| 22.511
|
2016-07-04 08:00:00
| 10.583
| 5.961
| 7.143
| 2.914
| 3.655
| 2.071
| 21.667
|
2016-07-04 09:00:00
| 11.588
| 6.296
| 7.569
| 3.056
| 3.472
| 2.01
| 25.395
|
2016-07-04 10:00:00
| 11.922
| 6.229
| 7.711
| 3.056
| 3.746
| 1.949
| 25.184
|
2016-07-04 11:00:00
| 12.324
| 5.559
| 8.422
| 3.234
| 4.203
| 1.98
| 29.546
|
2016-07-04 12:00:00
| 10.382
| 5.894
| 6.858
| 2.63
| 3.564
| 1.949
| 29.475
|
2016-07-04 13:00:00
| 10.047
| 5.425
| 6.752
| 3.02
| 3.32
| 1.949
| 29.264
|
2016-07-04 14:00:00
| 10.516
| 6.028
| 7.107
| 3.376
| 3.137
| 1.919
| 30.952999
|
2016-07-04 15:00:00
| 10.717
| 6.095
| 6.787
| 3.02
| 3.168
| 2.01
| 31.726
|
2016-07-04 16:00:00
| 9.98
| 5.023
| 6.503
| 2.559
| 3.442
| 2.041
| 33.132999
|
2016-07-04 17:00:00
| 11.32
| 5.09
| 7.356
| 2.452
| 3.868
| 2.041
| 28.983
|
2016-07-04 18:00:00
| 11.387
| 4.957
| 7.356
| 2.452
| 4.295
| 2.193
| 28.983
|
2016-07-04 19:00:00
| 9.377
| 3.885
| 6.894
| 2.239
| 2.467
| 1.188
| 31.726
|
2016-07-04 20:00:00
| 10.114
| 4.086
| 7.143
| 2.239
| 2.955
| 1.462
| 25.184
|
2016-07-04 21:00:00
| 10.382
| 4.823
| 6.894
| 2.31
| 3.503
| 2.01
| 30.531
|
2016-07-04 22:00:00
| 9.645
| 4.89
| 6.61
| 1.919
| 3.259
| 1.919
| 27.646
|
2016-07-04 23:00:00
| 12.726
| 6.497
| 9.346
| 3.482
| 3.168
| 1.98
| 25.466
|
2016-07-05 00:00:00
| 11.989
| 5.626
| 8.777
| 2.949
| 3.198
| 1.98
| 25.958
|
2016-07-05 01:00:00
| 12.525
| 6.296
| 8.955
| 3.163
| 3.137
| 2.01
| 25.958
|
2016-07-05 02:00:00
| 12.324
| 6.296
| 8.813
| 3.376
| 2.985
| 1.919
| 26.028
|
2016-07-05 03:00:00
| 10.717
| 5.425
| 8.066
| 2.878
| 2.833
| 1.858
| 28.913
|
Time-Series-Library (TSLib)
TSLib is an open-source library for deep learning researchers, especially for deep time series analysis.
We provide a neat code base to evaluate advanced deep time series models or develop your model, which covers five mainstream tasks: long- and short-term forecasting, imputation, anomaly detection, and classification.
This benchmark collection is designed to evaluate and develop advanced deep time-series models. For an in-depth exploration of current time-series models and their performance, please refer to our paper Deep Time Series Models: A Comprehensive Survey and Benchmark.
To get started with the codebase and contribute, please visit the GitHub repository.
Dataset Overview
| Tasks | Benchmarks | Metrics | Series Length |
|---|---|---|---|
| Forecasting | Long-term: ETT (4 subsets), Electricity, Traffic, Weather, Exchange, ILI | MSE, MAE | 96~720 (ILI: 24~60) |
| Short-term: M4 (6 subsets) | SMAPE, MASE, OWA | 6~48 | |
| Imputation | ETT (4 subsets), Electricity, Weather | MSE, MAE | 96 |
| Classification | UEA (10 subsets) | Accuracy | 29~1751 |
| Anomaly Detection | SMD, MSL, SMAP, SWaT, PSM | Precision, Recall, F1-Score | 100 |
File Structure
Time-Series-Library/
├── ETT-small/
├── EthanolConcentration/
├── FaceDetection/
├── Handwriting/
├── Heartbeat/
├── JapaneseVowels/
├── MSL/
├── PEMS-SF/
├── PSM/
├── SMAP/
├── SMD/
├── SWaT/
├── SelfRegulationSCP1/
├── SelfRegulationSCP2/
├── SpokenArabicDigits/
├── UWaveGestureLibrary/
├── electricity/
├── exchange_rate/
├── illness/
├── m4/
├── traffic/
├── weather/
├── .gitattributes
└── README.md
Usage
You can load the dataset directly using the datasets library:
from datasets import load_dataset
dataset = load_dataset("thuml/Time-Series-Library", "ETTh1")
Or download specific files with hf_hub_download:
from huggingface_hub import hf_hub_download
hf_hub_download("thuml/Time-Series-Library", "ETT-small/ETTh1.csv", repo_type="dataset")
License
This dataset is released under the CC BY 4.0 License.
Citation
If you find this repo useful, please cite our paper.
@inproceedings{wu2023timesnet,
title={TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis},
author={Haixu Wu and Tengge Hu and Yong Liu and Hang Zhou and Jianmin Wang and Mingsheng Long},
booktitle={International Conference on Learning Representations},
year={2023},
}
@article{wang2024tssurvey,
title={Deep Time Series Models: A Comprehensive Survey and Benchmark},
author={Yuxuan Wang and Haixu Wu and Jiaxiang Dong and Yong Liu and Mingsheng Long and Jianmin Wang},
booktitle={arXiv preprint arXiv:2407.13278},
year={2024},
}
- Downloads last month
- 376