Hermi2023/doc2query-ppo-msmarco-100-121
Text Generation
•
Updated
•
5
msmarco-passage
The msmarco-passage dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
This dataset provides:
docs (documents, i.e., the corpus); count=8,841,823This dataset is used by: msmarco-passage_dev, msmarco-passage_dev_judged, msmarco-passage_eval, msmarco-passage_train_triples-small, msmarco-passage_train_triples-v2, msmarco-passage_trec-dl-hard, msmarco-passage_trec-dl-hard_fold1, msmarco-passage_trec-dl-hard_fold2, msmarco-passage_trec-dl-hard_fold3, msmarco-passage_trec-dl-hard_fold4, msmarco-passage_trec-dl-hard_fold5
from datasets import load_dataset
docs = load_dataset('irds/msmarco-passage', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
Note that calling load_dataset will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in 🤗 Dataset format.
@inproceedings{Bajaj2016Msmarco,
title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset},
author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang},
booktitle={InCoCo@NIPS},
year={2016}
}