Datasets:

Modalities:
Text
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
Dataset Viewer
Auto-converted to Parquet
task_path
stringlengths
3
199
โŒ€
dataset
stringlengths
1
128
โŒ€
model_name
stringlengths
1
223
โŒ€
paper_url
stringlengths
21
601
โŒ€
metric_name
stringlengths
1
50
โŒ€
metric_value
stringlengths
1
9.22k
โŒ€
Optical Character Recognition (OCR)
SUT
Tesseract
https://ieeexplore.ieee.org/document/10326243
Character Error Rate (CER)
0.083
Optical Character Recognition (OCR)
SUT
EasyOCR
https://ieeexplore.ieee.org/document/10326243
Character Error Rate (CER)
0.072
Optical Character Recognition (OCR)
im2latex-100k
I2L-STRIPS
http://arxiv.org/abs/1802.05415v2
BLEU
88.86%
Optical Character Recognition (OCR)
FSNS - Test
AttentionOCR_Inception-resnet-v2_Location
http://arxiv.org/abs/1704.03549v4
Sequence error
15.8
Optical Character Recognition (OCR)
FSNS - Test
SEE
https://arxiv.org/abs/1712.05404
Sequence error
22
Optical Character Recognition (OCR)
FSNS - Test
STREET
http://arxiv.org/abs/1702.03970v1
Sequence error
27.54
Optical Character Recognition (OCR)
I2L-140K
I2L-NOPOOL
http://arxiv.org/abs/1802.05415v2
BLEU
89.09%
Optical Character Recognition (OCR)
I2L-140K
I2L-STRIPS
http://arxiv.org/abs/1802.05415v2
BLEU
89%
Optical Character Recognition (OCR)
VideoDB's OCR Benchmark Public Collection
GPT-4o
https://arxiv.org/abs/2502.06445v1
Character Error Rate (CER)
0.2378
Optical Character Recognition (OCR)
VideoDB's OCR Benchmark Public Collection
GPT-4o
https://arxiv.org/abs/2502.06445v1
Word Error Rate (WER)
0.5117
Optical Character Recognition (OCR)
VideoDB's OCR Benchmark Public Collection
GPT-4o
https://arxiv.org/abs/2502.06445v1
Average Accuracy
76.22
Optical Character Recognition (OCR)
VideoDB's OCR Benchmark Public Collection
Gemini-1.5 Pro
https://arxiv.org/abs/2502.06445v1
Character Error Rate (CER)
0.2387
Optical Character Recognition (OCR)
VideoDB's OCR Benchmark Public Collection
Gemini-1.5 Pro
https://arxiv.org/abs/2502.06445v1
Word Error Rate (WER)
0.2385
Optical Character Recognition (OCR)
VideoDB's OCR Benchmark Public Collection
Gemini-1.5 Pro
https://arxiv.org/abs/2502.06445v1
Average Accuracy
76.13
Optical Character Recognition (OCR)
VideoDB's OCR Benchmark Public Collection
Claude-3 Sonnet
https://arxiv.org/abs/2502.06445v1
Character Error Rate (CER)
0.3229
Optical Character Recognition (OCR)
VideoDB's OCR Benchmark Public Collection
Claude-3 Sonnet
https://arxiv.org/abs/2502.06445v1
Word Error Rate (WER)
0.4663
Optical Character Recognition (OCR)
VideoDB's OCR Benchmark Public Collection
Claude-3 Sonnet
https://arxiv.org/abs/2502.06445v1
Average Accuracy
67.71
Optical Character Recognition (OCR)
VideoDB's OCR Benchmark Public Collection
RapidOCR
https://arxiv.org/abs/2502.06445v1
Character Error Rate (CER)
0.7620
Optical Character Recognition (OCR)
VideoDB's OCR Benchmark Public Collection
RapidOCR
https://arxiv.org/abs/2502.06445v1
Word Error Rate (WER)
0.4302
Optical Character Recognition (OCR)
VideoDB's OCR Benchmark Public Collection
RapidOCR
https://arxiv.org/abs/2502.06445v1
Average Accuracy
56.98
Optical Character Recognition (OCR)
VideoDB's OCR Benchmark Public Collection
EasyOCR
https://arxiv.org/abs/2502.06445v1
Character Error Rate (CER)
0.5070
Optical Character Recognition (OCR)
VideoDB's OCR Benchmark Public Collection
EasyOCR
https://arxiv.org/abs/2502.06445v1
Word Error Rate (WER)
0.8262
Optical Character Recognition (OCR)
VideoDB's OCR Benchmark Public Collection
EasyOCR
https://arxiv.org/abs/2502.06445v1
Average Accuracy
49.30
Optical Character Recognition (OCR)
Benchmarking Chinese Text Recognition: Datasets, Baselines, and an Empirical Study
DTrOCR
https://arxiv.org/abs/2308.15996v1
Accuracy (%)
89.6
Optical Character Recognition (OCR)
Benchmarking Chinese Text Recognition: Datasets, Baselines, and an Empirical Study
DTrOCR 105M
https://arxiv.org/abs/2308.15996v1
Accuracy (%)
89.6
Optical Character Recognition (OCR)
Benchmarking Chinese Text Recognition: Datasets, Baselines, and an Empirical Study
MaskOCR-L
https://arxiv.org/abs/2206.00311v3
Accuracy (%)
82.6
Optical Character Recognition (OCR)
Benchmarking Chinese Text Recognition: Datasets, Baselines, and an Empirical Study
TransOCR
http://openaccess.thecvf.com//content/CVPR2021/html/Chen_Scene_Text_Telescope_Text-Focused_Scene_Image_Super-Resolution_CVPR_2021_paper.html
Accuracy (%)
72.8
Optical Character Recognition (OCR)
Benchmarking Chinese Text Recognition: Datasets, Baselines, and an Empirical Study
SRN
https://arxiv.org/abs/2003.12294v1
Accuracy (%)
65.0
Optical Character Recognition (OCR)
Benchmarking Chinese Text Recognition: Datasets, Baselines, and an Empirical Study
MORAN
http://arxiv.org/abs/1901.03003v1
Accuracy (%)
64.3
Optical Character Recognition (OCR)
Benchmarking Chinese Text Recognition: Datasets, Baselines, and an Empirical Study
SEED
https://arxiv.org/abs/2005.10977v1
Accuracy (%)
61.2
Optical Character Recognition (OCR) > Active Learning
CIFAR10 (10,000)
TypiClust
https://arxiv.org/abs/2202.02794v4
Accuracy
93.2
Optical Character Recognition (OCR) > Active Learning
CIFAR10 (10,000)
PT4AL
https://arxiv.org/abs/2201.07459v3
Accuracy
93.1
Optical Character Recognition (OCR) > Active Learning
CIFAR10 (10,000)
Learning loss
https://arxiv.org/abs/1905.03677v1
Accuracy
91.01
Optical Character Recognition (OCR) > Active Learning
CIFAR10 (10,000)
CoreGCN
https://arxiv.org/abs/2006.10219v3
Accuracy
90.70
Optical Character Recognition (OCR) > Active Learning
CIFAR10 (10,000)
Core-set
http://arxiv.org/abs/1708.00489v4
Accuracy
89.92
Optical Character Recognition (OCR) > Active Learning
CIFAR10 (10,000)
Random Baseline (Resnet18)
https://arxiv.org/abs/2002.09564v3
Accuracy
88.45
Optical Character Recognition (OCR) > Active Learning
CIFAR10 (10,000)
Random Baseline (VGG16)
https://arxiv.org/abs/2002.09564v3
Accuracy
85.09
Optical Character Recognition (OCR) > Active Learning > Active Object Detection
PASCAL VOC 07+12
RetinaNet
https://arxiv.org/abs/2104.02324v1
mAP
(47.18, 58.41, 64.02, 67.72, 69.79, 71.07, 72.27) on 5% ~ 20%
Optical Character Recognition (OCR) > Active Learning > Active Object Detection
PASCAL VOC 07+12
SSD
https://arxiv.org/abs/2104.02324v1
mAP
(53.62, 62.86, 66.83, 69.33, 70.80, 72.21, 72.84, 73.74, 74.18, 74.91) on 1k ~ 10k
Optical Character Recognition (OCR) > Active Learning > Active Object Detection
COCO (Common Objects in Context)
RetinaNet
https://arxiv.org/abs/2104.02324v1
AP
(7.3, 13.8, 16.9, 19.1, 20.8) on 2% ~ 10%
Optical Character Recognition (OCR) > Handwritten Text Recognition
Saint Gall
StackMix+Blots
https://arxiv.org/abs/2108.11667v1
CER
3.65
Optical Character Recognition (OCR) > Handwritten Text Recognition
READ 2016
DAN
https://arxiv.org/abs/2203.12273v4
CER (%)
3.22
Optical Character Recognition (OCR) > Handwritten Text Recognition
READ 2016
DAN
https://arxiv.org/abs/2203.12273v4
WER (%)
13.63
Optical Character Recognition (OCR) > Handwritten Text Recognition
READ 2016
HTR-VT(line-level)
https://arxiv.org/abs/2409.08573v1
CER (%)
3.9
Optical Character Recognition (OCR) > Handwritten Text Recognition
READ 2016
HTR-VT(line-level)
https://arxiv.org/abs/2409.08573v1
WER (%)
16.5
Optical Character Recognition (OCR) > Handwritten Text Recognition
Bentham
StackMix+Blots
https://arxiv.org/abs/2108.11667v1
CER
1.73
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM(line-level)
TrOCR
https://arxiv.org/abs/2109.10282v5
Test CER
3.4
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM(line-level)
TrOCR
https://arxiv.org/abs/2109.10282v5
Test WER
-
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM(line-level)
HTR-VT
https://arxiv.org/abs/2409.08573v1
Test CER
4.7
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM(line-level)
HTR-VT
https://arxiv.org/abs/2409.08573v1
Test WER
14.9
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM(line-level)
VAN
https://arxiv.org/abs/2012.03868v2
Test CER
5.0
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM(line-level)
VAN
https://arxiv.org/abs/2012.03868v2
Test WER
16.3
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM(line-level)
OrigamiNet-12
https://arxiv.org/abs/2006.07491v1
Test CER
6.0
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM(line-level)
OrigamiNet-12
https://arxiv.org/abs/2006.07491v1
Test WER
22.3
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM(line-level)
GFCN
https://arxiv.org/abs/2012.04961v1
Test CER
8.0
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM(line-level)
GFCN
https://arxiv.org/abs/2012.04961v1
Test WER
28.6
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
DTrOCR 105M
https://arxiv.org/abs/2308.15996v1
CER
2.38
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
Self-Attention + CTC + language model
https://arxiv.org/abs/2104.07787v2
CER
2.75
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
TrOCR-large 558M
https://arxiv.org/abs/2109.10282v5
CER
2.89
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
Transformer + CNN
https://arxiv.org/abs/2104.07787v2
CER
2.96
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
TrOCR-base 334M
https://arxiv.org/abs/2109.10282v5
CER
3.42
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
TrOCR-small 62M
https://arxiv.org/abs/2109.10282v5
CER
4.22
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
VAN
https://arxiv.org/abs/2012.03868v2
CER
4.32
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
VAN
https://arxiv.org/abs/2012.03868v2
WER
16.24
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
Transformer w/ CNN (+synth)
https://arxiv.org/abs/2005.13044v1
CER
4.67
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
HTR-VT(line-level)
https://arxiv.org/abs/2409.08573v1
CER
4.7
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
HTR-VT(line-level)
https://arxiv.org/abs/2409.08573v1
WER
14.9
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
Easter2.0
https://arxiv.org/abs/2205.14879v1
CER
6.21
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
FPHR+Aug Paragraph Level (~145 dpi)
https://arxiv.org/abs/2103.06450v3
CER
6.3
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
Decouple Attention Network
https://arxiv.org/abs/1912.10205v1
CER
6.4
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
Decouple Attention Network
https://arxiv.org/abs/1912.10205v1
WER
19.6
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
Start, Follow, Read
http://openaccess.thecvf.com/content_ECCV_2018/html/Curtis_Wigington_Start_Follow_Read_ECCV_2018_paper.html
CER
6.4
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
Start, Follow, Read
http://openaccess.thecvf.com/content_ECCV_2018/html/Curtis_Wigington_Start_Follow_Read_ECCV_2018_paper.html
WER
23.2
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
FPHR+Aug Line Level (~145 dpi)
https://arxiv.org/abs/2103.06450v3
CER
6.5
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
Leaky LP Cell
http://arxiv.org/abs/1902.11208v1
CER
6.6
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
Leaky LP Cell
http://arxiv.org/abs/1902.11208v1
WER
15.9
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
FPHR Paragraph Level (~145 dpi)
https://arxiv.org/abs/2103.06450v3
CER
6.7
Optical Character Recognition (OCR) > Handwritten Text Recognition
IAM
Transformer w/ CNN
https://arxiv.org/abs/2005.13044v1
CER
7.62
Optical Character Recognition (OCR) > Handwritten Text Recognition
SIMARA
DAN
https://arxiv.org/abs/2304.13606v1
CER (%)
6.46
Optical Character Recognition (OCR) > Handwritten Text Recognition
SIMARA
DAN
https://arxiv.org/abs/2304.13606v1
WER (%)
14.79
Optical Character Recognition (OCR) > Handwritten Text Recognition
READ2016(line-level)
HTR-VT
https://arxiv.org/abs/2409.08573v1
Test CER
3.9
Optical Character Recognition (OCR) > Handwritten Text Recognition
READ2016(line-level)
HTR-VT
https://arxiv.org/abs/2409.08573v1
Test WER
16.5
Optical Character Recognition (OCR) > Handwritten Text Recognition
READ2016(line-level)
VAN
https://arxiv.org/abs/2012.03868v2
Test CER
4.1
Optical Character Recognition (OCR) > Handwritten Text Recognition
READ2016(line-level)
VAN
https://arxiv.org/abs/2012.03868v2
Test WER
16.3
Optical Character Recognition (OCR) > Handwritten Text Recognition
READ2016(line-level)
DAN
https://arxiv.org/abs/2203.12273v4
Test CER
4.1
Optical Character Recognition (OCR) > Handwritten Text Recognition
READ2016(line-level)
DAN
https://arxiv.org/abs/2203.12273v4
Test WER
17.6
Optical Character Recognition (OCR) > Handwritten Text Recognition
READ2016(line-level)
Span
https://arxiv.org/abs/2102.08742v1
Test CER
4.6
Optical Character Recognition (OCR) > Handwritten Text Recognition
READ2016(line-level)
Span
https://arxiv.org/abs/2102.08742v1
Test WER
21.1
Optical Character Recognition (OCR) > Handwritten Text Recognition
READ2016(line-level)
CNN + BLSTM
https://arxiv.org/abs/1903.07377v2
Test CER
4.7
Optical Character Recognition (OCR) > Handwritten Text Recognition
READ2016(line-level)
CNN + BLSTM
https://arxiv.org/abs/1903.07377v2
Test WER
-
Optical Character Recognition (OCR) > Handwritten Text Recognition
Belfort
PyLaia (all transcriptions + agreement-based split)
https://arxiv.org/abs/2306.10878v1
CER (%)
4.34
Optical Character Recognition (OCR) > Handwritten Text Recognition
Belfort
PyLaia (all transcriptions + agreement-based split)
https://arxiv.org/abs/2306.10878v1
WER (%)
15.14
Optical Character Recognition (OCR) > Handwritten Text Recognition
Belfort
PyLaia (rover consensus + agreement-based split)
https://arxiv.org/abs/2306.10878v1
CER (%)
4.95
Optical Character Recognition (OCR) > Handwritten Text Recognition
Belfort
PyLaia (rover consensus + agreement-based split)
https://arxiv.org/abs/2306.10878v1
WER (%)
17.08
Optical Character Recognition (OCR) > Handwritten Text Recognition
Belfort
PyLaia (human transcriptions + agreement-based split)
https://arxiv.org/abs/2306.10878v1
CER (%)
5.57
Optical Character Recognition (OCR) > Handwritten Text Recognition
Belfort
PyLaia (human transcriptions + agreement-based split)
https://arxiv.org/abs/2306.10878v1
WER (%)
19.12
Optical Character Recognition (OCR) > Handwritten Text Recognition
Belfort
PyLaia (human transcriptions + random split)
https://arxiv.org/abs/2306.10878v1
CER (%)
10.54
Optical Character Recognition (OCR) > Handwritten Text Recognition
Belfort
PyLaia (human transcriptions + random split)
https://arxiv.org/abs/2306.10878v1
WER (%)
28.11
Optical Character Recognition (OCR) > Handwritten Text Recognition
HKR
StackMix+Blots
https://arxiv.org/abs/2108.11667v1
CER
3.49
Optical Character Recognition (OCR) > Handwritten Text Recognition
Digital Peter
StackMix+Blots
https://arxiv.org/abs/2108.11667v1
CER
2.5
End of preview. Expand in Data Studio
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Process data from paperswithcode

See https://huggingface.co/datasets/pwc-archive/files/tree/main.

Download and unzip evaluation tables:

curl -L -O "https://huggingface.co/datasets/pwc-archive/files/resolve/main/jul-28-evaluation-tables.json.gz"
gunzip jul-28-evaluation-tables.json.gz

Install jq. See https://jqlang.org/. If on Debian/Ubuntu, install with sudo apt-get install jq.

Example jq to extract:

jq -r '
  def process(parent):
    .task as $current_task |
    (if parent then parent + " > " + $current_task else $current_task end) as $full_path |
    (.datasets[]? |
      .dataset as $dataset |
      .sota.rows[]? |
      {
        task_path: $full_path,
        dataset: $dataset,
        model_name: .model_name,
        paper_url: .paper_url,
        metrics: .metrics
      }
    ),
    (.subtasks[]? | process($full_path));
  
  ["task_path", "dataset", "model_name", "paper_url", "metric_name", "metric_value"],
  (
    [.[] | process(null)] |
    .[] |
    [.task_path, .dataset, .model_name, .paper_url] + 
    (.metrics | to_entries[] | [.key, .value]) |
    flatten
  ) |
  @csv
' jul-28-evaluation-tables.json > results.csv

Should get 326,393 rows in results.csv and looks like this:

~/paperswithcode-data> nu -c "open results.csv | length"
# 326393
~/paperswithcode-data> nu -c "open results.csv | skip 100 | take 10"
# โ•ญโ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
# โ”‚ # โ”‚                             task_path                              โ”‚     dataset     โ”‚  model_name   โ”‚             paper_url              โ”‚ metric_name โ”‚ metric_value โ”‚
# โ”œโ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
# โ”‚ 0 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ HTR-VT        โ”‚ https://arxiv.org/abs/2409.08573v1 โ”‚ Test CER    โ”‚         2.80 โ”‚
# โ”‚ 1 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ HTR-VT        โ”‚ https://arxiv.org/abs/2409.08573v1 โ”‚ Test WER    โ”‚         7.40 โ”‚
# โ”‚ 2 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ OrigamiNet-24 โ”‚ https://arxiv.org/abs/2006.07491v1 โ”‚ Test CER    โ”‚         3.00 โ”‚
# โ”‚ 3 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ OrigamiNet-24 โ”‚ https://arxiv.org/abs/2006.07491v1 โ”‚ Test WER    โ”‚        11.00 โ”‚
# โ”‚ 4 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ OrigamiNet-18 โ”‚ https://arxiv.org/abs/2006.07491v1 โ”‚ Test CER    โ”‚         3.10 โ”‚
# โ”‚ 5 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ OrigamiNet-18 โ”‚ https://arxiv.org/abs/2006.07491v1 โ”‚ Test WER    โ”‚        11.10 โ”‚
# โ”‚ 6 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ OrigamiNet-12 โ”‚ https://arxiv.org/abs/2006.07491v1 โ”‚ Test CER    โ”‚         3.10 โ”‚
# โ”‚ 7 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ OrigamiNet-12 โ”‚ https://arxiv.org/abs/2006.07491v1 โ”‚ Test WER    โ”‚        11.20 โ”‚
# โ”‚ 8 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ TrOCR         โ”‚ https://arxiv.org/abs/2109.10282v5 โ”‚ Test CER    โ”‚         3.60 โ”‚
# โ”‚ 9 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ TrOCR         โ”‚ https://arxiv.org/abs/2109.10282v5 โ”‚ Test WER    โ”‚        11.60 โ”‚
# โ•ฐโ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ
Downloads last month
18