annotations_creators:
- machine-generated
language:
- en
license: cc-by-4.0
tags:
- medical
- rag
- synthetic-qa
- lay-symptom
pretty_name: MediMaven-QA v1.0
size_categories:
- 100K<n<1M
dataset_info:
- config_name: kb_chunks
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: section
dtype: string
- name: source
dtype: string
- name: text
dtype: string
- name: retrieved_date
dtype: string
- name: n_tokens
dtype: int64
splits:
- name: train
num_bytes: 133140842
num_examples: 70743
download_size: 51361461
dataset_size: 133140842
- config_name: qa_long
features:
- name: chunk_id
dtype: string
- name: question
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 52621793
num_examples: 143280
download_size: 26138154
dataset_size: 52621793
- config_name: qa_wide
features:
- name: chunk_id
dtype: string
- name: qa
list:
- name: answer
dtype: string
- name: question
dtype: string
splits:
- name: train
num_bytes: 49971385
num_examples: 70018
download_size: 27339393
dataset_size: 49971385
configs:
- config_name: kb_chunks
data_files:
- split: train
path: kb_chunks/train-*
- config_name: qa_long
data_files:
- split: train
path: qa_long/train-*
- config_name: qa_wide
data_files:
- split: train
path: qa_wide/train-*
π©Ί MediMaven-QA v1.1
MediMaven-QA is a multi-source, medically-grounded question-answer (QA) corpus designed for retrieval-augmented generation (RAG), LLM fine-tuning, and benchmarking factual consistency in healthcare chatbots. Version 1.1 aggregates Mayo Clinic, NHS.uk, WebMD, and CDC consumer health pages, then auto-generates lay-friendly Q&A pairs with GPT-4o. Each passage is PHI-scrubbed, CC-BY licensed, and versioned with Weights & Biases.
150 k QA pairs
28 M tokens
Balanced mix of concise FAQs and narrative symptom descriptions
π¦ Dataset Contents
Config (name) |
Rows | What it holds | Typical use-case |
|---|---|---|---|
chunks |
70 243 | 400-token, sentence-aware context windows with rich metadata (id, url, title, section, source, n_token, text) |
RAG context store / retriever training |
qa_wide |
70 018 | List-of-dict QA per chunk_id β single row may have β₯1 QA pair |
Fast retrieval + generation, keeps chunk linkage |
qa_long |
143 221 | Fully exploded (chunk_id, question, answer) |
Classic supervised QA fine-tuning or eval |
β οΈ Disclaimer β This corpus is for research & benchmarking only.
It is not a diagnostic tool and should not be used in clinical workflows.
π Quick Load
from datasets import load_dataset
# pick one of these configs
qa_long = load_dataset("bernard-kyei/medimaven-qa-data", "qa_long", split="train")
qa_wide = load_dataset("bernard-kyei/medimaven-qa-data", "qa_wide", split="train")
# accompany with chunks to get contexts
chunks = load_dataset("bernard-kyei/medimaven-qa-data", "kb_chunks", split="train")
print(qa_long[0]["question"])
print(qa_long[0]["answer"])
π οΈ Creation Pipeline
- Scraped Mayo Clinic, NHS.uk, WebMD, (licensed for public use).
- Sentence-aware chunking (spaCy).
- GPT-4o-mini synthetic Q-A:
- one concise lay question
- one symptom-narrative question (e.g., βI woke up with a painful lump β¦β)
- Cost: $40 for ~150 k pairs.
- Versions tracked as W&B artifacts.
| Stage | Tooling | Notes |
|---|---|---|
| 1οΈβ£ Crawl | Scrapy + Splash | Mayo Clinic, NHS.uk, WebMD, (public-domain / permissive T&Cs) |
| 2οΈβ£ Chunk | spaCy sentenciser | β400 tokens / chunk; keeps heading context |
| 3οΈβ£ Synthetic QA | GPT-4o-mini (gpt-4o-mini-2024-05-preview) |
β’ 1 concise lay Q β’ 1 symptom-narrative Q β cost $40 for ~150 k pairs |
| 4οΈβ£ Versioning | Weights & Biases Artifacts | kb_chunks, qa_wide qa_long |
π Key Stats
| Metric | Value |
|---|---|
| Total context tokens | ~28 M |
| Avg. tokens / chunk | 390 |
| Unique host domains | 4 |
| QA pairs / chunk (mean) | 2.0 |
| % symptom-narrative Qs | 51 % |
π§© Dataset Structure
| Field | Type | Description |
|---|---|---|
id |
string |
UUID4 per chunk |
url |
string |
Canonical page URL |
title |
string |
Page headline |
section |
string |
<h2>/<h3> section header |
source |
string |
Domain slug (mayo, nhs, webmd, cdc) |
text |
string |
β€ 400-token chunk |
n_tokens |
int32 |
Token count (tiktoken/gpt-4 tokenizer) |
qa |
list[dict] |
Each dict has question, answer |
ποΈ Changelog
| Date (UTC) | Version | Notes |
|---|---|---|
| 2025-05-29 | 1.1 | Multi-source crawl, synthetic QA, PHI scrub, W&B tracking |
| 2024-11-01 | 1.0 | MedQuad + iCliniq seed release |
Contributions
PRs welcome! Please open an issue describing planned changes.
We follow the Hugging Face Datasets community guidelines.
Maintainer: Bernard Kyei-Mensah β [email protected]
LinkedIn / GitHub: @dranreb1660
Acknowledgements
Thanks to the open-source healthcare community, Hugging Face, and contributors who reported issues and suggested improvements.
π Citation
@misc{KyeiMensah2025MediMavenQA,
author = {Kyei-Mensah, Bernard},
title = {MediMaven-QA: A Citation-Preserving Medical Q\A Dataset with Symptom Narratives},
year = {2025},
url = {https://huggingface.co/datasets/dranreb1660/medimaven-qa-data},
note = {Version 1.0}
}