metadata
annotations_creators:
- machine-generated
language:
- en
license: cc-by-4.0
tags:
- medical
- rag
- synthetic-qa
- lay-symptom
pretty_name: MediMaven-QA v1.0
size_categories:
- 100K<n<1M
dataset_info:
config_name: qa_long
features:
- name: chunk_id
dtype: string
- name: question
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 52621793
num_examples: 143280
download_size: 26138154
dataset_size: 52621793
configs:
- config_name: qa_long
data_files:
- split: train
path: qa_long/train-*
π©Ί MediMaven-QA v1.0
MediMaven-QA is a chunk-level, citation-preserving medical question-answer corpus purpose-built for Retrieval-Augmented Generation (RAG).
It bridges everyday lay-symptom narratives with trustworthy clinical content from curated web sources.
π¦ Dataset Contents
Config (name) |
Rows | What it holds | Typical use-case |
|---|---|---|---|
chunks |
70 248 | 200-token, sentence-aware context windows with rich metadata (id, url, title, section, source, n_token, text) |
RAG context store / retriever training |
qa_wide |
70 018 | List-of-dict QA per chunk_id β single row may have β₯1 QA pair |
Fast retrieval + generation, keeps chunk linkage |
qa_long |
143 221 | Fully exploded (chunk_id, question, answer) |
Classic supervised QA fine-tuning or eval |
β οΈ Disclaimer β This corpus is for research & benchmarking only.
It is not a diagnostic tool and should not be used in clinical workflows.
π Quick Load
from datasets import load_dataset
# pick one of these configs
qa_long = load_dataset("bernard-kyei/medimaven-qa-data", "qa_long", split="train")
qa_long = load_dataset("bernard-kyei/medimaven-qa-data", "qa_long", split="train")
# accompany with chunks to get contexts
chunks = load_dataset("bernard-kyei/medimaven-qa-data", "kb_chunks", split="train")
print(qa_long[0]["question"])
print(qa_long[0]["answer"])
π οΈ Generation Pipeline
| Stage | Tooling | Notes |
|---|---|---|
| 1οΈβ£ Crawl | Scrapy + Splash | Mayo Clinic, NHS.uk, WebMD, Cleveland Clinic (public-domain / permissive T&Cs) |
| 2οΈβ£ Chunk | spaCy sentenciser | β200 tokens / chunk; keeps heading context |
| 3οΈβ£ Synthetic QA | GPT-4o-mini (gpt-4o-mini-2024-05-preview) |
β’ 1 concise lay Q β’ 1 symptom-narrative Q β cost $40 for 143 k pairs |
| 4οΈβ£ Versioning | Weights & Biases Artifacts | kb_chunks, qa_wide qa_long |
π Key Stats
| Metric | Value |
|---|---|
| Total context tokens | 27.4 M |
| Avg. tokens / chunk | 390 |
| Unique host domains | 4 |
| QA pairs / chunk (mean) | 2.0 |
| % symptom-narrative Qs | 51 % |
π§© Dataset Structure (Arrow schema)
click to expand
βββββββββββββββ¬βββββββββββββββββββββββ β chunks β qa_wide / qa_long β βββββββββββββββΌβββββββββββββββββββββββ€ β id: string β chunk_id: string β β url: string β question: string β β title: str β answer: string β β section:str β -- qa_wide only -- β β source:str β qa: list β β text: str β β β n_token:int β β βββββββββββββββ΄βββββββββββββββββββββββπ Citation
@misc{KyeiMensah2025MediMavenQA,
author = {Kyei-Mensah, Bernard},
title = {MediMaven-QA: A Citation-Preserving Medical Q\A Dataset with Symptom Narratives},
year = {2025},
url = {https://huggingface.co/datasets/dranreb1660/medimaven-qa-data},
note = {Version 1.0}
}
ποΈ Changelog
| Date (UTC) | Version | Highlights |
|---|---|---|
| 2025-05-27 | v1.0 |
β’ Sentence-aware chunking β’ 143 k synthetic QA pairs β’ Cost optimisation to $25 |