Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Commit 0/1 could not be created on the Hub (after 6 attempts).
Error code:   CreateCommitError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

aliases
list
category
int64
count
int64
id
int64
name
string
words
list
[ "0_0" ]
0
7,585
434,799
0_0
[ [ "0", "0" ] ]
[ "1boy", "1boys", "sole_male" ]
0
941,438
540,830
1boy
[ [ "1boy" ], [ "sole", "male" ] ]
[ "1girl", "1girls", "sole_female" ]
0
4,438,737
470,575
1girl
[ [ "1girl" ], [ "sole", "female" ] ]
[ "1koma", "1panel" ]
0
4,316
1,270,233
1koma
[ [ "1koma" ], [ "1panel" ] ]
[ "1other", "sole_other" ]
0
32,644
1,463,605
1other
[ [ "1other" ], [ "sole", "other" ] ]
[ "2boy", "2boys" ]
0
189,145
449,194
2boys
[ [ "2boy" ] ]
[ "2_girls", "2girl", "2girls" ]
0
759,995
1,821
2girls
[ [ "2", "girl" ], [ "2girl" ] ]
[ "2koma" ]
0
15,712
469,042
2koma
[ [ "2koma" ] ]
[ "2others" ]
0
4,138
1,454,257
2others
[ [ "2other" ] ]
[ "3:" ]
0
6,490
202,427
3:
[ [ "3" ] ]
[ "3boy", "3boys" ]
0
51,128
487,156
3boys
[ [ "3boy" ] ]
[ "3d", "3dcg", "polygon" ]
0
10,988
379,504
3d
[ [ "3d" ], [ "3dcg" ], [ "polygon" ] ]
[ "3girl", "3girls" ]
0
188,521
399,836
3girls
[ [ "3girl" ] ]
[ "3koma" ]
0
10,312
30,851
3koma
[ [ "3koma" ] ]
[ "3others" ]
0
1,298
1,467,809
3others
[ [ "3other" ] ]
[ "4boy", "4boys" ]
0
22,818
479,955
4boys
[ [ "4boy" ] ]
[ "4girl", "4girls" ]
0
87,185
412,555
4girls
[ [ "4girl" ] ]
[ "4coma", "4koma", "yonkoma" ]
0
87,192
3,918
4koma
[ [ "4coma" ], [ "4koma" ], [ "yonkoma" ] ]
[ "5boy", "5boys" ]
0
11,131
480,899
5boys
[ [ "5boy" ] ]
[ "5girl", "5girls" ]
0
47,324
421,662
5girls
[ [ "5girl" ] ]
[ "5koma" ]
0
3,195
9,335
5koma
[ [ "5koma" ] ]
[ "6+boy", "6+boys", "6boy", "6boys" ]
0
24,169
572,753
6+boys
[ [ "6", "boy" ], [ "6boy" ] ]
[ "6+girl", "6+girls", "6girl", "6girls", "7girls", "8girls", "9girls" ]
0
69,384
567,316
6+girls
[ [ "6", "girl" ], [ "6girl" ], [ "7girl" ], [ "8girl" ], [ "9girl" ] ]
[ "6+others", "6others" ]
0
1,274
1,467,811
6+others
[ [ "6", "other" ], [ "6other" ] ]
[ "39" ]
0
1,553
501,337
39
[ [ "39" ] ]
[ "69" ]
0
1,980
2,834
69
[ [ "69" ] ]
[ "1970s_(style)", "70's", "70s" ]
0
706
1,551,195
1970s_(style)
[ [ "1970", "style" ], [ "70" ], [ "70", "" ] ]
[ "1980s_(style)", "80's", "80s" ]
0
3,961
1,551,196
1980s_(style)
[ [ "1980", "style" ], [ "80" ], [ "80", "" ] ]
[ "1990s_(style)", "90's", "90s" ]
0
7,018
1,551,197
1990s_(style)
[ [ "1990", "style" ], [ "90" ], [ "90", "" ] ]
[ "2006" ]
0
613
394,919
2006
[ [ "2006" ] ]
[ "2007" ]
0
776
380,200
2007
[ [ "2007" ] ]
[ "2008" ]
0
806
394,916
2008
[ [ "2008" ] ]
[ "2009" ]
0
1,231
452,607
2009
[ [ "2009" ] ]
[ "2010" ]
0
1,441
478,325
2010
[ [ "2010" ] ]
[ "2011" ]
0
1,372
494,704
2011
[ [ "2011" ] ]
[ "2012" ]
0
1,452
426,749
2012
[ [ "2012" ] ]
[ "2013" ]
0
1,475
637,922
2013
[ [ "2013" ] ]
[ "2014" ]
0
1,627
713,479
2014
[ [ "2014" ] ]
[ "2015" ]
0
2,470
542,457
2015
[ [ "2015" ] ]
[ "2016" ]
0
2,553
1,161,081
2016
[ [ "2016" ] ]
[ "2017" ]
0
2,440
1,161,082
2017
[ [ "2017" ] ]
[ "2018" ]
0
2,610
1,161,083
2018
[ [ "2018" ] ]
[ "2019" ]
0
2,568
821,841
2019
[ [ "2019" ] ]
[ "2020" ]
0
2,968
531,896
2020
[ [ "2020" ] ]
[ "2021" ]
0
3,919
1,161,088
2021
[ [ "2021" ] ]
[ "!", "exclamation_mark" ]
0
25,180
402,062
!
[ [ "exclamation", "mark" ] ]
[ "!!", "!!!", "!!!!" ]
0
7,353
452,549
!!
[]
[ "!!?", "!?", "!?!", "?!", "?!!", "interrobang" ]
0
16,999
433,182
!?
[ [ "interrobang" ] ]
[ "(9)", "9" ]
0
0
470,435
(9)
[ [ "9" ] ]
[ "(o)_(o)" ]
0
0
-1
(o)_(o)
[ [ "o", "o" ] ]
[ "+++" ]
0
11,493
568,920
+++
[]
[ "+_+", "cross-shaped_pupils", "star_eyes", "starry_eyes" ]
0
20,858
452,445
+_+
[ [ "cross", "shaped", "pupil" ], [ "star", "eye" ], [ "starry", "eye" ] ]
[ "...", "ellipsis" ]
0
33,894
466,984
...
[ [ "ellipsi" ] ]
[ "._." ]
0
1,438
496,388
._.
[]
[ ":3" ]
0
79,676
5,565
:3
[ [ "3" ] ]
[ ":/", ":\\" ]
0
7,318
436,870
:/
[]
[ ":<" ]
0
31,825
376,528
:<
[]
[ ":>" ]
0
11,408
441,419
:>
[]
[ ":>=", "blowjob_face", "vacuum_fellatio" ]
0
4,035
411,038
:>=
[ [ "blowjob", "face" ], [ "vacuum", "fellatio" ] ]
[ ":d" ]
0
408,044
384,553
:d
[ [ "d" ] ]
[ ":i" ]
0
2,546
510,070
:i
[ [ "i" ] ]
[ ":0", ":o" ]
0
143,080
14,599
:o
[ [ "0" ], [ "o" ] ]
[ ":b", ":p" ]
0
30,306
15,689
:p
[ [ "b" ], [ "p" ] ]
[ ":9", ":q" ]
0
23,004
412,202
:q
[ [ "9" ], [ "q" ] ]
[ ":t" ]
0
18,546
423,620
:t
[ [ "t" ] ]
[ ":x" ]
0
1,841
419,998
:x
[ [ "x" ] ]
[ ":|" ]
0
5,858
480,577
:|
[]
[ ";3" ]
0
2,251
453,756
;3
[ [ "3" ] ]
[ ";(" ]
0
601
622,003
;(
[]
[ ";)" ]
0
19,001
473,529
;)
[]
[ ";d" ]
0
50,426
466,990
;d
[ [ "d" ] ]
[ ";o" ]
0
7,366
416,892
;o
[ [ "o" ] ]
[ ";p" ]
0
5,502
413,907
;p
[ [ "p" ] ]
[ ";q" ]
0
3,575
468,016
;q
[ [ "q" ] ]
[ "<o><o>", "<o>_<o>" ]
0
964
589,458
<o>_<o>
[ [ "o", "o" ] ]
[ "=3" ]
0
5,861
482,590
=3
[ [ "3" ] ]
[ "=_=" ]
0
20,876
454,379
=_=
[]
[ "=d" ]
0
0
497,235
=d
[ [ "d" ] ]
[ ">:(" ]
0
4,586
550,308
>:(
[]
[ ">:)" ]
0
11,261
544,390
>:)
[]
[ "><", ">_<" ]
0
46,922
16,700
>_<
[]
[ ">_o", "o_<" ]
0
2,285
553,947
>_o
[ [ "o" ] ]
[ ">o<" ]
0
1,045
666,509
>o<
[ [ "o" ] ]
[ "?" ]
0
43,877
82,326
?
[]
[ "??" ]
0
2,550
462,978
??
[]
[ "@_@", "al_bhed_eyes", "spiral_eyes", "swirly_eyes" ]
0
20,339
11,285
@_@
[ [ "al", "bhed", "eye" ], [ "spiral", "eye" ], [ "swirly", "eye" ] ]
[ "\\m/" ]
0
6,313
420,311
\m/
[ [ "m" ] ]
[ "\\n/" ]
0
928
473,178
\n/
[ [ "n" ] ]
[ "\\o/" ]
0
1,443
381,861
\o/
[ [ "o" ] ]
[ "\\||/" ]
0
1,913
1,253,523
\||/
[]
[ "/\\", "/\\/\\", "/\\/\\/\\", "^^^" ]
0
42,712
534,982
^^^
[]
[ "^^", "^_^" ]
0
76,774
402,217
^_^
[]
[ "^o^" ]
0
2,179
491,150
^o^
[ [ "o" ] ]
[ "a" ]
0
0
3,924
a
[ [ "a" ] ]
[ "above_clouds" ]
0
789
642,272
above_clouds
[ [ "above", "cloud" ] ]
[ "abs", "six_pack" ]
0
60,864
387,991
abs
[ [ "ab" ], [ "six", "pack" ] ]
[ "absolutely_everyone" ]
0
728
82,386
absolutely_everyone
[ [ "absolutely", "everyone" ] ]
[ "abstract" ]
0
2,730
11,316
abstract
[ [ "abstract" ] ]
[ "/abstractbg", "abstract_background" ]
0
2,419
540,767
abstract_background
[ [ "abstract", "background" ], [ "abstractbg" ] ]
[ "absurdly_long_hair", "extremely_long_hair", "hair_past_feet" ]
0
12,984
693,118
absurdly_long_hair
[ [ "absurdly", "long", "hair" ], [ "extremely", "long", "hair" ], [ "hair", "past", "feet" ] ]
End of preview.

Tagger Vocabularies Dataset

Summary

This repository provides a comprehensive collection of vocabulary datasets specifically designed for image tagging and annotation systems. The dataset contains structured tag vocabularies from multiple popular tagging models including DeepDanbooru, MLDanbooru, and various Waifu Diffusion tagger variants. Each vocabulary file contains detailed metadata for thousands of tags, organized with aliases, categories, usage counts, and word breakdowns to support robust natural language processing and computer vision applications.

The dataset features meticulously structured JSON files that include essential tag information such as name, aliases, category classification, occurrence counts, and semantic word groupings. This enables researchers and developers to build sophisticated tagging systems, improve model interpretability, and enhance cross-model compatibility. The vocabulary standardization across different tagger models facilitates comparative analysis and transfer learning between various annotation frameworks.

Performance-wise, these vocabularies represent the culmination of extensive training on large-scale image datasets, with tag counts ranging from hundreds to millions of occurrences. The categorization system (0-9) provides logical grouping of tags by semantic domains, while the word breakdowns offer insights into tag composition and relationships. This makes the dataset particularly valuable for multi-modal learning applications that bridge visual content understanding with textual annotation.

The dataset covers diverse domains including character attributes, clothing, accessories, settings, and content ratings, making it suitable for various applications in content moderation, image search, automated annotation, and AI-assisted creative tools. The inclusion of multiple model variants ensures comprehensive coverage of different tagging philosophies and annotation granularities.

Usage

For direct file access:

import json
from huggingface_hub import hf_hub_download

# Download and load specific vocabulary file
file_path = hf_hub_download(
    repo_id="deepghs/tagger_vocabs",
    filename="deepdanbooru/tags.json",
    repo_type="dataset"
)

with open(file_path, 'r', encoding='utf-8') as f:
    tags_data = json.load(f)

# Process tags
for tag in tags_data[:10]:
    print(f"Tag: {tag['name']} (Category: {tag['category']})")
    print(f"Aliases: {', '.join(tag['aliases'])}")
    print(f"Occurrences: {tag['count']}")

Available Vocabularies

The dataset includes vocabulary files for the following tagger models:

  • deepdanbooru/tags.json (3.12 MB) - Original DeepDanbooru vocabulary
  • mldanbooru/tags.json (4.00 MB) - MLDanbooru vocabulary with enhanced coverage
  • wd-v1-4-convnext-tagger/tags.json (2.18 MB) - Waifu Diffusion ConvNeXT tagger
  • wd-v1-4-convnext-tagger-v2/tags.json - Updated ConvNeXT tagger vocabulary
  • wd-v1-4-convnextv2-tagger-v2/tags.json (3.08 MB) - ConvNeXTV2-based tagger
  • wd-v1-4-moat-tagger-v2/tags.json (3.08 MB) - MOAT architecture tagger
  • wd-v1-4-swinv2-tagger-v2/tags.json - SwinV2 transformer tagger
  • wd-v1-4-vit-tagger/tags.json - Vision Transformer tagger
  • wd-v1-4-vit-tagger-v2/tags.json - Updated ViT tagger vocabulary

Data Structure

Each vocabulary file follows the same JSON structure:

[
  {
    "aliases": ["alternative_names"],
    "category": 0,
    "count": 12345,
    "id": 123456,
    "name": "primary_tag_name",
    "words": [
      ["word", "breakdown"],
      ["alternative", "phrasing"]
    ]
  }
]

Field Descriptions:

  • aliases: Alternative names/synonyms for the tag
  • category: Numerical category (0-9) for semantic grouping
  • count: Number of occurrences in training data
  • id: Unique identifier for the tag
  • name: Primary tag name
  • words: Semantic word breakdowns for NLP processing

Original Content

vocabs data for tagger models, maybe useful for some basic NLP calculation.

Citation

@misc{tagger_vocabs,
  title        = {Tagger Vocabularies Dataset},
  author       = {deepghs},
  howpublished = {\url{https://huggingface.co/datasets/deepghs/tagger_vocabs}},
  year         = {2023},
  note         = {Comprehensive vocabulary datasets for image tagging models including DeepDanbooru, MLDanbooru, and Waifu Diffusion taggers},
  abstract     = {This repository provides a comprehensive collection of vocabulary datasets specifically designed for image tagging and annotation systems. The dataset contains structured tag vocabularies from multiple popular tagging models including DeepDanbooru, MLDanbooru, and various Waifu Diffusion tagger variants. Each vocabulary file contains detailed metadata for thousands of tags, organized with aliases, categories, usage counts, and word breakdowns to support robust natural language processing and computer vision applications. The dataset features meticulously structured JSON files that include essential tag information such as name, aliases, category classification, occurrence counts, and semantic word groupings.},
  keywords     = {vocabulary, tagging, image-annotation, nlp, danbooru}
}
Downloads last month
17