Improve dataset card: Add `image-text-to-text` task category, `mathematical-reasoning` tag, and expand content sections

#2
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +56 -5
README.md CHANGED
@@ -1,17 +1,19 @@
1
  ---
2
- license: mit
3
  language:
4
  - en
 
5
  size_categories:
6
  - 1K<n<10K
 
 
 
7
  pretty_name: GSM8K-V
8
  viewer: true
9
  tags:
10
  - Visual-reasoning
11
  - VLM
12
  - GSM8K
13
- task_categories:
14
- - visual-question-answering
15
  ---
16
 
17
  <div align="center">
@@ -70,6 +72,8 @@ Yueting Zhuang<sup>1</sup>
70
 
71
  ## 👁️ Overview
72
 
 
 
73
  **GSM8K-V** is a purely visual multi-image mathematical reasoning benchmark that systematically maps each GSM8K math word problem into its visual counterpart to enable a clean, within-item comparison across modalities. Built via an automated pipeline that extracts and allocates problem information across scenes, generates scene-level descriptions, and renders images, coupled with meticulous human annotation, the benchmark comprises 1,319 high-quality multiscene problems (5,343 images) and addresses limitations of prior visual math evaluations that predominantly focus on geometry, seldom cover visualized word problems, and rarely test reasoning across multiple images with semantic dependencies. Evaluations of a broad range of open- and closed-source models reveal a substantial modality gap—for example, Gemini-2.5-Pro attains 95.22% accuracy on text-based GSM8K but only 46.93% on GSM8K-V—highlighting persistent challenges in understanding and reasoning over images in realistic scenarios and providing a foundation to guide the development of more robust and generalizable vision-language models.
74
 
75
  Our main contributions are summarized as follows.
@@ -79,8 +83,7 @@ Our main contributions are summarized as follows.
79
  - We perform a thorough evaluation and analysis of the existing VLMs in **GSM8K-V.** The results reveal substantial room for improvement, and our analysis provides valuable insights for enhancing the mathematical reasoning capabilities of future VLMs.
80
 
81
 
82
-
83
- ## 🚀 Quick Start
84
 
85
  ```bash
86
  # Clone the repository
@@ -105,8 +108,56 @@ python eval.py --type api \
105
  --concurrency <eval_parallel_num> --image_dir <data_path>
106
  ```
107
 
 
 
 
 
 
 
 
 
 
108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
111
  ## 📝 Citation
112
 
 
1
  ---
 
2
  language:
3
  - en
4
+ license: mit
5
  size_categories:
6
  - 1K<n<10K
7
+ task_categories:
8
+ - visual-question-answering
9
+ - image-text-to-text
10
  pretty_name: GSM8K-V
11
  viewer: true
12
  tags:
13
  - Visual-reasoning
14
  - VLM
15
  - GSM8K
16
+ - mathematical-reasoning
 
17
  ---
18
 
19
  <div align="center">
 
72
 
73
  ## 👁️ Overview
74
 
75
+ <img src="assets/main_01.png" alt="GSM8K-V Pipeline">
76
+
77
  **GSM8K-V** is a purely visual multi-image mathematical reasoning benchmark that systematically maps each GSM8K math word problem into its visual counterpart to enable a clean, within-item comparison across modalities. Built via an automated pipeline that extracts and allocates problem information across scenes, generates scene-level descriptions, and renders images, coupled with meticulous human annotation, the benchmark comprises 1,319 high-quality multiscene problems (5,343 images) and addresses limitations of prior visual math evaluations that predominantly focus on geometry, seldom cover visualized word problems, and rarely test reasoning across multiple images with semantic dependencies. Evaluations of a broad range of open- and closed-source models reveal a substantial modality gap—for example, Gemini-2.5-Pro attains 95.22% accuracy on text-based GSM8K but only 46.93% on GSM8K-V—highlighting persistent challenges in understanding and reasoning over images in realistic scenarios and providing a foundation to guide the development of more robust and generalizable vision-language models.
78
 
79
  Our main contributions are summarized as follows.
 
83
  - We perform a thorough evaluation and analysis of the existing VLMs in **GSM8K-V.** The results reveal substantial room for improvement, and our analysis provides valuable insights for enhancing the mathematical reasoning capabilities of future VLMs.
84
 
85
 
86
+ ## 🚀 Sample Usage
 
87
 
88
  ```bash
89
  # Clone the repository
 
108
  --concurrency <eval_parallel_num> --image_dir <data_path>
109
  ```
110
 
111
+ ## 📊 Benchmark Statistics
112
+
113
+ <p align="center">
114
+ <img src="assets/data_statistic.png" alt="Dataset Statistics" width="45%">
115
+ <img src="assets/data_distribution_01.png" alt="Category Distribution" width="47%">
116
+ </p>
117
+
118
+
119
+ ## 📈 Main Results
120
 
121
+ <p align="center">
122
+ <img src="assets/main_result.png" alt="Main Result" style="width: 100%; height: auto;">
123
+ </p>
124
+
125
+ ## ⚙️ Advanced Configuration Options
126
+
127
+ ```bash
128
+ # Limit number of samples
129
+ python eval.py --num-samples 5
130
+
131
+ # Specify evaluation modes
132
+ python eval.py --modes text_only visual scene
133
+
134
+ # Specify prompt modes for visual evaluation
135
+ python eval.py --prompt-modes implicit explicit
136
 
137
+ # Evaluate only specific categories
138
+ python eval.py --data-categories measurement physical_metric
139
+
140
+ # Evaluate specific subcategories
141
+ python eval.py --data-subcategories distance speed weight
142
+
143
+ # Example Use
144
+ # ---- vllm start ----
145
+ vllm serve model/internvl3_5-8b \
146
+ --port 8010 \
147
+ --tensor-parallel-size 4 \
148
+ --gpu-memory-utilization 0.9 \
149
+ --max-model-len 8192 \
150
+ --trust-remote-code \
151
+ --served-model-name "internvl3.5-8b"
152
+
153
+ # ---- eval start ----
154
+ python eval.py --type vllm \
155
+ --model_name internvl3.5-8b --api_base http://localhost:8010/v1 \
156
+ --concurrency 32 --image_dir data/images
157
+
158
+ # For detailed help
159
+ python eval.py --help
160
+ ```
161
 
162
  ## 📝 Citation
163