Dataset Viewer
Auto-converted to Parquet
audio
audioduration (s)
1.81
20
id
stringlengths
38
40
language
stringclasses
1 value
-4lllKYOpOA__U__S0---0005.390-0009.500
ca
-4lllKYOpOA__U__S1---0009.500-0013.210
ca
-4lllKYOpOA__U__S1---0048.190-0052.350
ca
-4lllKYOpOA__U__S1---0060.080-0064.240
ca
-4lllKYOpOA__U__S1---0069.460-0073.950
ca
-76y9y7WylE__U__S100---0662.030-0669.950
ca
-76y9y7WylE__U__S173---1155.400-1159.960
ca
-76y9y7WylE__U__S202---1376.490-1384.410
ca
-76y9y7WylE__U__S216---1454.220-1457.930
ca
-76y9y7WylE__U__S223---1493.690-1506.620
ca
-76y9y7WylE__U__S256---1697.620-1703.420
ca
-76y9y7WylE__U__S262---1728.380-1733.540
ca
-76y9y7WylE__U__S282---1845.760-1858.830
ca
-76y9y7WylE__U__S93---0638.020-0644.700
ca
-7IDeG2jVBI__U__S1---0025.210-0035.260
ca
-7IDeG2jVBI__U__S10---0085.530-0089.130
ca
-7IDeG2jVBI__U__S16---0125.370-0136.900
ca
-AJauUlxWt4__U__S14---0086.320-0091.760
ca
-EcYoQrnu-g__U__S0---0114.420-0127.740
ca
-EcYoQrnu-g__U__S0---0375.390-0384.770
ca
-EcYoQrnu-g__U__S1---0000.720-0015.470
ca
-EcYoQrnu-g__U__S1---0044.720-0051.350
ca
-EcYoQrnu-g__U__S1---0087.040-0094.720
ca
-EcYoQrnu-g__U__S1---0151.900-0163.880
ca
-EcYoQrnu-g__U__S1---0163.880-0172.380
ca
-EcYoQrnu-g__U__S1---0202.270-0214.820
ca
-EcYoQrnu-g__U__S1---0261.710-0268.850
ca
-EcYoQrnu-g__U__S1---0318.690-0325.820
ca
-EcYoQrnu-g__U__S10---0015.470-0026.780
ca
-EcYoQrnu-g__U__S10---0026.780-0035.800
ca
-EcYoQrnu-g__U__S10---0036.970-0044.720
ca
-EcYoQrnu-g__U__S10---0051.350-0067.990
ca
-EcYoQrnu-g__U__S10---0069.180-0080.630
ca
-EcYoQrnu-g__U__S10---0218.280-0225.570
ca
-EcYoQrnu-g__U__S10---0226.120-0242.100
ca
-EcYoQrnu-g__U__S10---0242.330-0246.730
ca
-EcYoQrnu-g__U__S27---0172.380-0188.550
ca
-EcYoQrnu-g__U__S27---0188.580-0202.110
ca
-EcYoQrnu-g__U__S34---0247.500-0261.710
ca
-EcYoQrnu-g__U__S34---0355.130-0360.230
ca
-EcYoQrnu-g__U__S34---0360.490-0365.070
ca
-EcYoQrnu-g__U__S34---0388.630-0403.440
ca
-EcYoQrnu-g__U__S45---0268.850-0275.520
ca
-EcYoQrnu-g__U__S45---0275.520-0285.450
ca
-EcYoQrnu-g__U__S45---0285.450-0297.670
ca
-EcYoQrnu-g__U__S45---0297.670-0306.410
ca
-EcYoQrnu-g__U__S45---0306.410-0318.690
ca
-EcYoQrnu-g__U__S45---0325.820-0338.100
ca
-EcYoQrnu-g__U__S45---0338.100-0355.130
ca
-HH0gMIDVXY__U__S1---0528.970-0545.220
ca
-HH0gMIDVXY__U__S197---1223.920-1237.420
ca
-KUuWNmaJ8A__U__S28---0211.320-0217.340
ca
-KUuWNmaJ8A__U__S28---0281.490-0285.290
ca
-KUuWNmaJ8A__U__S30---0300.520-0310.330
ca
-KUuWNmaJ8A__U__S30---0311.510-0316.280
ca
-KUuWNmaJ8A__U__S30---0342.300-0348.580
ca
-KUuWNmaJ8A__U__S30---0349.770-0353.470
ca
-ae9lgjki9o__U__S0---0000.000-0005.680
ca
-ae9lgjki9o__U__S0---0197.870-0203.510
ca
-ae9lgjki9o__U__S1---0005.680-0017.980
ca
-ae9lgjki9o__U__S1---0053.480-0073.250
ca
-ae9lgjki9o__U__S1---0079.620-0090.020
ca
-ae9lgjki9o__U__S1---0102.140-0111.720
ca
-ae9lgjki9o__U__S1---0130.420-0148.620
ca
-ae9lgjki9o__U__S1---0189.060-0197.870
ca
-ae9lgjki9o__U__S13---0073.250-0079.620
ca
-ae9lgjki9o__U__S13---0090.020-0102.140
ca
-ae9lgjki9o__U__S17---0111.720-0130.420
ca
-ae9lgjki9o__U__S23---0148.660-0154.580
ca
-ae9lgjki9o__U__S23---0154.580-0171.300
ca
-ae9lgjki9o__U__S26---0017.980-0034.690
ca
-ae9lgjki9o__U__S26---0034.690-0053.480
ca
-ae9lgjki9o__U__S26---0171.400-0189.060
ca
-b_MG0pRS3c__U__S3---0024.760-0031.310
ca
-b_MG0pRS3c__U__S5---0039.140-0043.150
ca
-h9A_hJsI40__U__S10---0045.340-0059.090
ca
-h9A_hJsI40__U__S10---0059.090-0066.040
ca
-h9A_hJsI40__U__S10---0066.040-0082.420
ca
-h9A_hJsI40__U__S10---0082.420-0092.570
ca
-h9A_hJsI40__U__S10---0092.570-0104.750
ca
-h9A_hJsI40__U__S10---0104.750-0115.340
ca
-h9A_hJsI40__U__S10---0115.340-0122.590
ca
-h9A_hJsI40__U__S10---0125.540-0132.550
ca
-h9A_hJsI40__U__S100---0627.520-0636.660
ca
-h9A_hJsI40__U__S100---1269.760-1284.420
ca
-h9A_hJsI40__U__S100---1284.420-1295.440
ca
-h9A_hJsI40__U__S100---1295.440-1301.030
ca
-h9A_hJsI40__U__S100---1429.170-1445.520
ca
-h9A_hJsI40__U__S100---1976.560-1982.430
ca
-h9A_hJsI40__U__S100---2105.970-2113.390
ca
-h9A_hJsI40__U__S100---2228.630-2235.880
ca
-h9A_hJsI40__U__S100---2620.710-2632.830
ca
-h9A_hJsI40__U__S102---0644.900-0648.820
ca
-h9A_hJsI40__U__S102---2648.180-2656.010
ca
-h9A_hJsI40__U__S102---2656.010-2669.490
ca
-h9A_hJsI40__U__S104---0657.270-0662.490
ca
-h9A_hJsI40__U__S104---0663.140-0667.370
ca
-h9A_hJsI40__U__S104---0674.650-0682.650
ca
-h9A_hJsI40__U__S108---0682.650-0687.990
ca
-h9A_hJsI40__U__S108---0695.670-0708.850
ca
End of preview. Expand in Data Studio

VoxLingua107 IberLang Dataset

Dataset Summary

The IberVoice dataset is a curated and validated collection of audio samples in Spanish, Catalan, Galician, Basque and Occitan designed to enhance spoken language identification (LID) systems for the official languages of Spain. The dataset originates from the VoxLingua107 multilingual corpus, but has been cleaned and reannotated to correct systematic labeling errors affecting minority languages.

Why

In the original VoxLingua107 dataset, language labels were assigned automatically based on YouTube video metadata, resulting in numerous mislabeled samples — particularly for Catalan, Galician, Basque and Occitan where Spanish speech was often included under incorrect tags.

Correction Process

To address this, each subset of IberVoice (except Occitan) underwent a two-stage refinement process:

  1. High-confidence filtering: Audio segments with a language confidence score above 0.95, as predicted by the Whisper Large model, were retained to ensure linguistic purity.

  2. Iterative reclassification: A Whisper Medium model was fine-tuned on these clean samples for language identification. The resulting model was then used to predict labels for the remaining audios. Samples with prediction confidence above 0.8 were automatically reassigned, while low-confidence cases were manually verified.

This process produced a high-quality, balanced, and linguistically faithful dataset for the four Iberian languages.

For Occitan, since there was less data to check, a native speaker reviewed each of the audio files and discarded any that weren't well-labeled.

If you want to see all the changes made to the original dataset, check the file Errors_found.ods.

Language Coverage

Language Code Hours
Catalán ca 83
Gallego gl 58
Español es 39
Euskera/Basque eu 27
Occitan oc 13

Citation

This dataset is derived from VoxLingua107 by J. Valk and T. Alumae (2021), licensed under CC BY 4.0.

Modifications: dataset cleaning and language reclassification for Catalan, Galician, Basque, Spanish, and Occitan, performed by Ugiat Technologies.

Downloads last month
176

Models trained or fine-tuned on Ugiat/voxlingua107_IberLang