Datasets:

Modalities:
Audio
Text
Formats:
webdataset
ArXiv:
Libraries:
Datasets
WebDataset
License:
Dataset Viewer (First 5GB)
Auto-converted to Parquet
json
dict
wav
audio
__key__
string
__url__
string
{ "lang": "ab", "utt_id": "woYoPeGMUYU__U__S162-0990_670-0999_890" }
woYoPeGMUYU__U__S162-0990_670-0999_890
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "AEdKoJVicWk__U__S11-0084_400-0099_000" }
AEdKoJVicWk__U__S11-0084_400-0099_000
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "5uNr6PTG6Dc__U__S11-0115_390-0126_180" }
5uNr6PTG6Dc__U__S11-0115_390-0126_180
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "f40DItuc_Pw__U__S224-1456_370-1465_100" }
f40DItuc_Pw__U__S224-1456_370-1465_100
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "ZfErNLzvTPM__U__S12-0318_370-0330_720" }
ZfErNLzvTPM__U__S12-0318_370-0330_720
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "YP3Y2uUT7TM__U__S23-0156_790-0170_680" }
YP3Y2uUT7TM__U__S23-0156_790-0170_680
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "BMwOV4yDxUc__U__S128-0970_510-0983_620" }
BMwOV4yDxUc__U__S128-0970_510-0983_620
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "YGqlbl1_HIQ__U__S76-0477_940-0482_330" }
YGqlbl1_HIQ__U__S76-0477_940-0482_330
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "HhfpwZ9yWVU__U__S12-0178_390-0192_830" }
HhfpwZ9yWVU__U__S12-0178_390-0192_830
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "AbsDTItATUc__U__S110-1279_650-1286_310" }
AbsDTItATUc__U__S110-1279_650-1286_310
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "oEN6a4Gq14c__U__S13-0271_480-0285_290" }
oEN6a4Gq14c__U__S13-0271_480-0285_290
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "f40DItuc_Pw__U__S157-0993_920-1003_330" }
f40DItuc_Pw__U__S157-0993_920-1003_330
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "woYoPeGMUYU__U__S184-1177_850-1189_870" }
woYoPeGMUYU__U__S184-1177_850-1189_870
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "f40DItuc_Pw__U__S218-1269_370-1288_370" }
f40DItuc_Pw__U__S218-1269_370-1288_370
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "0-ADnQeur0__U__S116-0724_770-0734_700" }
0-ADnQeur0__U__S116-0724_770-0734_700
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "AbsDTItATUc__U__S16-0178_870-0194_060" }
AbsDTItATUc__U__S16-0178_870-0194_060
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "NQNISdZIKRU__U__S103-0530_890-0538_360" }
NQNISdZIKRU__U__S103-0530_890-0538_360
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "VVePJEvrpbw__U__S4-0032_500-0044_330" }
VVePJEvrpbw__U__S4-0032_500-0044_330
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "ya8FYPmyxjE__U__S0-0217_000-0224_580" }
ya8FYPmyxjE__U__S0-0217_000-0224_580
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "qdJeUtCgyEM__U__S10-0068_940-0080_980" }
qdJeUtCgyEM__U__S10-0068_940-0080_980
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "0-ADnQeur0__U__S107-0695_890-0699_960" }
0-ADnQeur0__U__S107-0695_890-0699_960
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "v3q9jcqLdlc__U__S32-0309_770-0324_930" }
v3q9jcqLdlc__U__S32-0309_770-0324_930
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "woYoPeGMUYU__U__S0-0131_400-0137_510" }
woYoPeGMUYU__U__S0-0131_400-0137_510
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "BMwOV4yDxUc__U__S167-0262_980-0267_370" }
BMwOV4yDxUc__U__S167-0262_980-0267_370
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "AbsDTItATUc__U__S110-1459_680-1465_590" }
AbsDTItATUc__U__S110-1459_680-1465_590
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "8MUBcD4_WS0__U__S83-0507_880-0519_310" }
8MUBcD4_WS0__U__S83-0507_880-0519_310
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "f40DItuc_Pw__U__S191-1129_870-1144_750" }
f40DItuc_Pw__U__S191-1129_870-1144_750
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "Nz6ldNVa8JE__U__S20-0139_050-0147_630" }
Nz6ldNVa8JE__U__S20-0139_050-0147_630
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "iT2vFZR-ynw__U__S154-1048_110-1056_640" }
iT2vFZR-ynw__U__S154-1048_110-1056_640
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "Gt4atHTSfHc__U__S0-0017_510-0028_240" }
Gt4atHTSfHc__U__S0-0017_510-0028_240
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "gmw9EgpdCRk__U__S101-0615_150-0620_510" }
gmw9EgpdCRk__U__S101-0615_150-0620_510
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "BzxtCJuijms__U__S22-0312_630-0324_020" }
BzxtCJuijms__U__S22-0312_630-0324_020
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "AbsDTItATUc__U__S250-1718_360-1721_900" }
AbsDTItATUc__U__S250-1718_360-1721_900
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "EFHcF2Q0eG4__U__S65-0438_440-0448_010" }
EFHcF2Q0eG4__U__S65-0438_440-0448_010
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "A6BC_femr50__U__S3-0024_360-0035_650" }
A6BC_femr50__U__S3-0024_360-0035_650
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "zON-vTSbmUg__U__S104-1214_510-1222_230" }
zON-vTSbmUg__U__S104-1214_510-1222_230
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "HhfpwZ9yWVU__U__S44-0312_770-0329_200" }
HhfpwZ9yWVU__U__S44-0312_770-0329_200
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "4tbwbMm-XuQ__U__S14-0075_010-0094_080" }
4tbwbMm-XuQ__U__S14-0075_010-0094_080
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "NQNISdZIKRU__U__S10-0261_300-0273_610" }
NQNISdZIKRU__U__S10-0261_300-0273_610
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "aKm2zdjwtzo__U__S177-1085_660-1096_120" }
aKm2zdjwtzo__U__S177-1085_660-1096_120
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "aKm2zdjwtzo__U__S41-0396_760-0404_950" }
aKm2zdjwtzo__U__S41-0396_760-0404_950
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "uo5LgyIcKEg__U__S243-1638_410-1655_110" }
uo5LgyIcKEg__U__S243-1638_410-1655_110
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "ya8FYPmyxjE__U__S66-0571_100-0580_920" }
ya8FYPmyxjE__U__S66-0571_100-0580_920
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "sOU5tFxUtaI__U__S50-0357_000-0361_410" }
sOU5tFxUtaI__U__S50-0357_000-0361_410
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "gmw9EgpdCRk__U__S48-0420_050-0439_810" }
gmw9EgpdCRk__U__S48-0420_050-0439_810
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "5S8Og8SVB0k__U__S24-0186_760-0194_270" }
5S8Og8SVB0k__U__S24-0186_760-0194_270
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "aKm2zdjwtzo__U__S41-0331_270-0341_440" }
aKm2zdjwtzo__U__S41-0331_270-0341_440
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "GST9psSO3_g__U__S10-0062_070-0066_240" }
GST9psSO3_g__U__S10-0062_070-0066_240
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "LPQHQcCoSEw__U__S7-0055_160-0068_260" }
LPQHQcCoSEw__U__S7-0055_160-0068_260
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "aKm2zdjwtzo__U__S42-0325_590-0331_270" }
aKm2zdjwtzo__U__S42-0325_590-0331_270
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "38E2dCENrg8__U__S47-0383_650-0389_790" }
38E2dCENrg8__U__S47-0383_650-0389_790
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "84zSIwaVMy8__U__S2-0015_990-0024_590" }
84zSIwaVMy8__U__S2-0015_990-0024_590
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "iT2vFZR-ynw__U__S150-1216_230-1221_400" }
iT2vFZR-ynw__U__S150-1216_230-1221_400
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "lx0xnxY0ljk__U__S22-0191_930-0203_760" }
lx0xnxY0ljk__U__S22-0191_930-0203_760
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "BnJR_jWZAGw__U__S15-0111_320-0127_770" }
BnJR_jWZAGw__U__S15-0111_320-0127_770
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "vxUWmpGTgCw__U__S0-0122_610-0130_640" }
vxUWmpGTgCw__U__S0-0122_610-0130_640
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "f40DItuc_Pw__U__S109-0816_630-0825_780" }
f40DItuc_Pw__U__S109-0816_630-0825_780
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "AABeQn0S2yk__U__S12-0076_230-0094_830" }
AABeQn0S2yk__U__S12-0076_230-0094_830
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "vxUWmpGTgCw__U__S0-0155_720-0165_660" }
vxUWmpGTgCw__U__S0-0155_720-0165_660
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "84zSIwaVMy8__U__S1-0122_990-0131_440" }
84zSIwaVMy8__U__S1-0122_990-0131_440
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "Go6iqNG5fNg__U__S0-0583_050-0594_280" }
Go6iqNG5fNg__U__S0-0583_050-0594_280
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "YP3Y2uUT7TM__U__S23-0231_240-0242_980" }
YP3Y2uUT7TM__U__S23-0231_240-0242_980
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "BzxtCJuijms__U__S22-0266_630-0276_060" }
BzxtCJuijms__U__S22-0266_630-0276_060
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "NQNISdZIKRU__U__S16-0240_690-0245_170" }
NQNISdZIKRU__U__S16-0240_690-0245_170
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "aKm2zdjwtzo__U__S88-0555_730-0564_200" }
aKm2zdjwtzo__U__S88-0555_730-0564_200
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "BnJR_jWZAGw__U__S0-0028_300-0038_400" }
BnJR_jWZAGw__U__S0-0028_300-0038_400
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "V6OV2J-20ns__U__S31-0203_030-0217_470" }
V6OV2J-20ns__U__S31-0203_030-0217_470
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "0-ADnQeur0__U__S57-0350_480-0355_010" }
0-ADnQeur0__U__S57-0350_480-0355_010
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "VVePJEvrpbw__U__S0-0000_000-0010_130" }
VVePJEvrpbw__U__S0-0000_000-0010_130
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "Y1sGL5xbmyQ__U__S10-0055_770-0075_660" }
Y1sGL5xbmyQ__U__S10-0055_770-0075_660
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "woYoPeGMUYU__U__S200-1282_220-1290_440" }
woYoPeGMUYU__U__S200-1282_220-1290_440
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "cBEaD72quSc__U__S19-0116_310-0122_040" }
cBEaD72quSc__U__S19-0116_310-0122_040
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "gGLxja0WzHc__U__S52-0466_550-0473_750" }
gGLxja0WzHc__U__S52-0466_550-0473_750
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "cL7NmKY4kNE__U__S0-0118_970-0131_350" }
cL7NmKY4kNE__U__S0-0118_970-0131_350
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "HhfpwZ9yWVU__U__S12-0269_650-0279_640" }
HhfpwZ9yWVU__U__S12-0269_650-0279_640
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "f40DItuc_Pw__U__S14-0082_230-0088_590" }
f40DItuc_Pw__U__S14-0082_230-0088_590
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "HhfpwZ9yWVU__U__S12-0245_780-0250_960" }
HhfpwZ9yWVU__U__S12-0245_780-0250_960
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "ZfErNLzvTPM__U__S17-0268_490-0273_020" }
ZfErNLzvTPM__U__S17-0268_490-0273_020
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "4nlYBIV5jFE__U__S0-0079_620-0084_640" }
4nlYBIV5jFE__U__S0-0079_620-0084_640
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "yHEekd-PSVg__U__S13-0047_560-0056_410" }
yHEekd-PSVg__U__S13-0047_560-0056_410
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "ZfErNLzvTPM__U__S34-0383_390-0390_110" }
ZfErNLzvTPM__U__S34-0383_390-0390_110
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "zON-vTSbmUg__U__S1-0496_100-0500_120" }
zON-vTSbmUg__U__S1-0496_100-0500_120
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "EcOGDLEKbvA__U__S13-0026_350-0042_020" }
EcOGDLEKbvA__U__S13-0026_350-0042_020
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "HcR4sSU30Y0__U__S31-0239_590-0243_970" }
HcR4sSU30Y0__U__S31-0239_590-0243_970
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "aKm2zdjwtzo__U__S0-0027_240-0032_020" }
aKm2zdjwtzo__U__S0-0027_240-0032_020
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "ya8FYPmyxjE__U__S0-0068_250-0075_150" }
ya8FYPmyxjE__U__S0-0068_250-0075_150
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "YPfDVq47lGc__U__S0-0025_250-0033_660" }
YPfDVq47lGc__U__S0-0025_250-0033_660
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "f40DItuc_Pw__U__S0-0409_480-0424_090" }
f40DItuc_Pw__U__S0-0409_480-0424_090
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "4tbwbMm-XuQ__U__S27-0212_190-0225_990" }
4tbwbMm-XuQ__U__S27-0212_190-0225_990
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "38E2dCENrg8__U__S17-0224_710-0233_790" }
38E2dCENrg8__U__S17-0224_710-0233_790
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "omyUUpjghVA__U__S17-0106_170-0123_900" }
omyUUpjghVA__U__S17-0106_170-0123_900
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "BzxtCJuijms__U__S55-0324_020-0331_650" }
BzxtCJuijms__U__S55-0324_020-0331_650
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "AbsDTItATUc__U__S110-1293_600-1300_000" }
AbsDTItATUc__U__S110-1293_600-1300_000
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "5uNr6PTG6Dc__U__S0-0035_740-0050_480" }
5uNr6PTG6Dc__U__S0-0035_740-0050_480
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "GGoM1bt9Cdg__U__S9-0081_150-0089_600" }
GGoM1bt9Cdg__U__S9-0081_150-0089_600
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "NTHRFXGH3QM__U__S15-0053_160-0062_380" }
NTHRFXGH3QM__U__S15-0053_160-0062_380
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "Y1sGL5xbmyQ__U__S0-0019_310-0024_740" }
Y1sGL5xbmyQ__U__S0-0019_310-0024_740
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "HPnu5YY54__U__S0-0009_620-0017_750" }
HPnu5YY54__U__S0-0009_620-0017_750
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "aKm2zdjwtzo__U__S41-0341_440-0354_930" }
aKm2zdjwtzo__U__S41-0341_440-0354_930
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
{ "lang": "ab", "utt_id": "8MUBcD4_WS0__U__S17-0131_940-0137_570" }
8MUBcD4_WS0__U__S17-0131_940-0137_570
hf://datasets/TalTechNLP/voxlingua107_wds@1ee6cf294d5cca0ae7094257fa800b4f0b29d532/train/ab/000000.tar
End of preview. Expand in Data Studio

VoxLingua107

VoxLingua107 is a speech dataset for training spoken language identification models. The dataset consists of short speech segments automatically extracted from YouTube videos and labeled according the language of the video title and description, with some post-processing steps to filter out false positives.

VoxLingua107 contains data for 107 languages. The total amount of speech in the training set is 6628 hours. The average amount of data per language is 62 hours. However, the real amount per language varies a lot. There is also a seperate development set containing 1609 speech segments from 33 languages, validated by at least two volunteers to really contain the given language.

For more information, see the paper Jörgen Valk, Tanel Alumäe. VoxLingua107: a Dataset for Spoken Language Recognition. Proc. SLT 2021.

Why

VoxLingua107 can be used for training spoken language recognition models that work well with real-world, varying speech data. You can try a demo system trained on this dataset here.

How

We extracted audio data from YouTube videos that are retrieved using language-specific search phrases (random phrases from Wikipedia of the particular language). If the language of the video title and description matched with the language of the search phrase, the audio in the video was deemed likely to be in that particular language. This allowed to collect large amounts of somewhat noisy data relatively cheaply. Speech/non-speech detection and speaker diarization was used to segment the videos into short sentence-like utterances. A data-driven post-filtering step was applied to remove clips that were very different from other clips in this language's dataset, and thus likely not in the given language. Due to the automatic data collection process, there are still clips in the dataset that are not in the given language or contain non-speech (around 2% overall), especially for some languages (like Welsh).

License and copyright

The VoxLingua107 dataset is distributed under the Creative Commons Attribution 4.0 International License. The copyright remains with the original owners of the video.

We also point out that the distribution of languages, accents, dialects, genders, races and societal factors in this dataset is not representative of the global population. Using this dataset for training and deploying models may thus introduce unintended biases.

Notice and take down policy

Notice: Should you consider that our data contains material that is owned by you and should therefore not be reproduced here, please:

  • Clearly identify yourself, with detailed contact data such as an address, telephone number or email address at which you can be contacted.
  • Clearly identify the copyrighted work claimed to be infringed.
  • Clearly identify the material that is claimed to be infringing and information reasonably sufficient to allow us to locate the material.
  • Send the request to Tanel Alumäe

Take down: We will comply to legitimate requests by removing the affected sources from the corpus.

Languages and sizes

Language Code Language Name Hours
ab Abkhazian 10
af Afrikaans 108
am Amharic 81
ar Arabic 59
as Assamese 155
az Azerbaijani 58
ba Bashkir 58
be Belarusian 133
bg Bulgarian 50
bn Bengali 55
bo Tibetan 101
br Breton 44
bs Bosnian 105
ca Catalan 88
ceb Cebuano 6
cs Czech 67
cy Welsh 76
da Danish 28
de German 39
el Greek 66
en English 49
eo Esperanto 10
es Spanish 39
et Estonian 38
eu Basque 29
fa Persian 56
fi Finnish 33
fo Faroese 67
fr French 67
gl Galician 72
gn Guarani 2
gu Gujarati 46
gv Manx 4
ha Hausa 106
haw Hawaiian 12
hi Hindi 81
hr Croatian 118
ht Haitian 96
hu Hungarian 73
hy Armenian 69
ia Interlingua 3
id Indonesian 40
is Icelandic 92
it Italian 51
iw Hebrew 96
ja Japanese 56
jw Javanese 53
ka Georgian 98
kk Kazakh 78
km Central Khmer 41
kn Kannada 46
ko Korean 77
la Latin 67
lb Luxembourgish 75
ln Lingala 90
lo Lao 42
lt Lithuanian 82
lv Latvian 42
mg Malagasy 109
mi Maori 34
mk Macedonian 112
ml Malayalam 47
mn Mongolian 71
mr Marathi 85
ms Malay 83
mt Maltese 66
my Burmese 41
ne Nepali 72
nl Dutch 40
nn Norwegian Nynorsk 57
no Norwegian 107
oc Occitan 15
pa Panjabi 54
pl Polish 80
ps Pushto 47
pt Portuguese 64
ro Romanian 65
ru Russian 73
sa Sanskrit 15
sco Scots 3
sd Sindhi 84
si Sinhala 67
sk Slovak 40
sl Slovenian 121
sn Shona 30
so Somali 103
sq Albanian 71
sr Serbian 50
su Sundanese 64
sv Swedish 34
sw Swahili 64
ta Tamil 51
te Telugu 77
tg Tajik 64
th Thai 61
tk Turkmen 85
tl Tagalog 93
tr Turkish 59
tt Tatar 103
uk Ukrainian 52
ur Urdu 42
uz Uzbek 45
vi Vietnamese 64
war Waray 11
yi Yiddish 46
yo Yoruba 94
zh Mandarin Chinese 44

Usage

Although webdataset can be used in a streaming fashion, it is recommended to first make a local copy fo the dataset using git clone.

git lfs install
git clone [email protected]:datasets/TalTechNLP/voxlingua107_wds

Then you can use the Python webdataset library to create an iterable dataset out of it:

import webdataset as wds
import random
train_files = glob.glob("voxlingua107_wds/train/**/*.tar") # you can also limit the training data to selected languages    
dev_files = glob.glob("voxlingua107_wds/dev/*.tar")

random.shuffle(train_files)

def mapper(sample):
    # "audio" field represents 16 kHz raw audio
    return {"audio": sample[0], "lang": sample[1]["lang"]}
    
# Since each shard contains 500 samples for a single language, it is good to use a reasonably large buffer size to get nicely shuffled samples
buffer_size = 100000   
dataset = wds.WebDataset(train_urls, shardshuffle=2000).shuffle(buffer_size, initial=buffer_size).decode(wds.torch_audio).to_tuple("wav","json").map(mapper)
dev_dataset = wds.WebDataset(dev_urls).decode(wds.torch_audio).to_tuple("wav","json").map(mapper)

train_iter = iter(dataset)
print(next(train_iter))
{'audio': (tensor([[-9.7656e-04, -8.5449e-04, -3.0518e-05,  ...,  2.7466e-03,
      3.7842e-03,  5.1880e-03]]), 16000), 'lang': 'kn'}

Citing

@inproceedings{valk2021slt,
  title={{VoxLingua107}: a Dataset for Spoken Language Recognition},
  author={J{\"o}rgen Valk and Tanel Alum{\"a}e},
  booktitle={Proc. IEEE SLT Workshop},
  year={2021},
}
Downloads last month
786