Datasets:
sample
unknown |
|---|
"gASVZkABAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASVBmIBAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASVtl4BAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASVNk0BAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASVVkYBAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASVVlMBAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASVZl0BAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASVJjUBAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASVZicBAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASV5mYBAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
Dataset Card
This dataset contains a single huggingface split, named 'all_samples'.
The samples contains a single huggingface feature, named "sample".
Samples are instances of plaid.containers.sample.Sample. Mesh objects included in samples follow the CGNS standard, and can be converted in Muscat.Containers.Mesh.Mesh.
Example of commands:
from datasets import load_dataset
from plaid.bridges.huggingface_bridge import huggingface_dataset_to_plaid
hf_dataset = load_dataset("PLAID-datasets/2D_Multiscale_Hyperelasticity", split="all_samples")
dataset, problem = huggingface_dataset_to_plaid(hf_dataset, processes_number = 4)
ids_train = problem.get_split('DOE_train')
ids_test = problem.get_split('DOE_test')
sample_train_0 = dataset[ids_train[0]]
sample_test_0 = dataset[ids_test[0]]
# inputs
nodes = sample_train_0.get_nodes()
elements = sample_train_0.get_elements()
nodal_tags = sample_train_0.get_nodal_tags()
for sn in ['C11', 'C12', 'C22']:
scalar = sample_train_0.get_scalar(sn)
# outputs
for fn in ['u1', 'u2', 'P11', 'P12', 'P22', 'P21', 'psi']:
field = sample_train_0.get_field(fn)
effective_energy = sample_train_0.get_scalar("effective_energy")
Dataset Details
Dataset Description
This dataset contains 2D quasistatic non-linear structural mechanics solutions, with finite elasticity and topology variations.
The variablity in the samples are 3 input scalars and the geometry (mesh). Outputs of interest are 1 scalar and 7 fields. Sample feature variable topology, in the form of variable number of holes in the meshes.
Various training and testing sets are provided (for all topologies together and for each topology), and outputs are not provided on the testing sets.
Dataset created using the PLAID library and datamodel, version: 0.1.
- Language: PLAID
- License: cc-by-sa-4.0
- Owner: Safran
Dataset Sources
- Repository: Zenodo
- Downloads last month
- 200

