Dataset Viewer
The dataset viewer is not available for this split.
Cannot load the dataset split (in streaming mode) to extract the first rows.
Error code: StreamingRowsError
Exception: CastError
Message: Couldn't cast
text: string
data: null
labels: null
to
{'data': Value('uint8'), 'labels': Value('uint8')}
because column names don't match
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise
return get_rows(
^^^^^^^^^
File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/src/worker/utils.py", line 77, in get_rows
rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2431, in __iter__
for key, example in ex_iterable:
^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
for key, pa_table in self._iter_arrow():
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1984, in _iter_arrow
pa_table = cast_table_to_features(pa_table, self.features)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2192, in cast_table_to_features
raise CastError(
datasets.table.CastError: Couldn't cast
text: string
data: null
labels: null
to
{'data': Value('uint8'), 'labels': Value('uint8')}
because column names don't matchNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
YAML Metadata
Warning:
The task_categories "clustering" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
MNIST8M Dataset (.mat format)
Dataset Description
This repository contains the MNIST8M dataset converted to MATLAB .h5 format for convenient use in MATLAB environments. The original data is sourced from the LIBSVM datasets page.
Dataset Summary
- Original Source: LIBSVM Multiclass Datasets - MNIST8M
- Format Conversion: Converted from original LibSVM format to MATLAB
.h5format - Purpose: Facilitate clustering and machine learning experiments in MATLAB
- Files:
MNIST8M_data.h5,labels.mat
Data Specifications
- Samples: 8,100,000 (8.1 million)
- Features: 784 (28×28 pixel images)
- Data Type:
uint8 - Value Range: [0, 255]
- Labels: 10 classes (digits 0-9)
- Label Type:
uint8 - Label Range: [0, 9]
Storage Format
MNIST8M_data: uint8 matrix of size 8,100,000 × 784labels: uint8 vector of size 8,100,000 × 1
Usage Warning
⚠️ Memory Considerations: Loading the entire dataset directly into memory may cause out-of-memory errors on systems with insufficient RAM. The uncompressed data requires approximately 6GB of memory (8.1M × 784 × 1 byte).
Recommended Usage
For systems with limited memory, consider:
- Loading data in batches
- Using memory-mapped files
- Working with data subsets
- Converting to single precision when possible
Source Attribution
Original dataset courtesy of:
MATLAB Loading Example
dataset_name = 'MNIST8M';
% Data path
data_file = 'MNIST8M_data.h5'; % Your directory
data = h5read(data_file, '/MNIST8M');
data = double(data); % May cause out-of-memory
data_info = h5info(data_file);
data_size = data_info.Datasets.Dataspace.Size;
n_points = data_size(1); % Total number of points
n_features = data_size(2); % Number of dimensions
>> h5disp('MNIST8M_data.h5');
HDF5 MNIST8M_data.h5
Group '/'
Dataset 'MNIST8M'
Size: 8100000x784
MaxSize: 8100000x784
Datatype: H5T_STD_U8LE (uint8)
ChunkSize: 100000x784
Filters: none
FillValue: 0
- Downloads last month
- 42